Practical Active Noise Control Algorithms in Bayesian Inversion Framework

This paper approaches the problem of adaptive active noise control (ANC) as a Bayesian inverse problem. Initially, a forward model for the ANC system in the generic form usually used in the theory of inverse problems is derived. A vector of control system parameters is considered the problem's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) S. 1 - 6
Hauptverfasser: Ardekani, Iman, Sharifzadeh, Hamid, Pour, Soheil
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 16.11.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper approaches the problem of adaptive active noise control (ANC) as a Bayesian inverse problem. Initially, a forward model for the ANC system in the generic form usually used in the theory of inverse problems is derived. A vector of control system parameters is considered the problem's unknown variable. The unknown is assumed to be a multivariate random variable with a Gaussian prior probability density function. A data vector is formed using samples of the residual noise signal collected by a feedback microphone. Then, the standard Bayesian inversion method is applied to the forward model, resulting in a posterior probability density function for the unknown variable. We use the maximizer of this function to adjust the ANC system parameters. Both numerical results using computer simulation and empirical results using an experimental ANC setup confirm the efficiency of the proposed algorithm in practice.
AbstractList This paper approaches the problem of adaptive active noise control (ANC) as a Bayesian inverse problem. Initially, a forward model for the ANC system in the generic form usually used in the theory of inverse problems is derived. A vector of control system parameters is considered the problem's unknown variable. The unknown is assumed to be a multivariate random variable with a Gaussian prior probability density function. A data vector is formed using samples of the residual noise signal collected by a feedback microphone. Then, the standard Bayesian inversion method is applied to the forward model, resulting in a posterior probability density function for the unknown variable. We use the maximizer of this function to adjust the ANC system parameters. Both numerical results using computer simulation and empirical results using an experimental ANC setup confirm the efficiency of the proposed algorithm in practice.
Author Pour, Soheil
Ardekani, Iman
Sharifzadeh, Hamid
Author_xml – sequence: 1
  givenname: Iman
  surname: Ardekani
  fullname: Ardekani, Iman
  email: iardekani@unitec.ac.nz
  organization: School of Computing Unitec Institute of Technology,Auckland,New Zealand
– sequence: 2
  givenname: Hamid
  surname: Sharifzadeh
  fullname: Sharifzadeh, Hamid
  email: hsharifzadeh@unitec.ac.nz
  organization: School of Computing Unitec Institute of Technology,Auckland,New Zealand
– sequence: 3
  givenname: Soheil
  surname: Pour
  fullname: Pour, Soheil
  email: spour@unitec.ac.nz
  organization: School of Computing Unitec Institute of Technology,Auckland,New Zealand
BookMark eNotj7tOwzAUQI0EAy18AYv5gAQ_Yid3LFYLkcpj6MBW2c4NWCQ2cqKi_j2V6HSkMxzpLMhlTBEJuees5JzBQ2vWxryslQIGpWBClABNIzhckAXXWlU1A_VxTdr3bP0cvB3o6sQD0tcUJqQmxTmnkxw-Uw7z1zjREOmjPeIUbKRtPGCeQop0k-2Ivyl_35Cr3g4T3p65JLvNemeei-3bU2tW2yJUjSjAotRCVgxEw7jwtXe9qy2vVFd74bjolOIcOu071ci-kc45cFpDbRFV38slufvPBkTc_-Qw2nzcn-fkH-PMSyM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICECCME55909.2022.9988219
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 166547095X
9781665470957
EndPage 6
ExternalDocumentID 9988219
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i482-9ae362340928012c7cbfb7a145d7c2b12d55119d6cd583f83bbb9b6697aee5ff3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:31 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i482-9ae362340928012c7cbfb7a145d7c2b12d55119d6cd583f83bbb9b6697aee5ff3
PageCount 6
ParticipantIDs ieee_primary_9988219
PublicationCentury 2000
PublicationDate 2022-Nov.-16
PublicationDateYYYYMMDD 2022-11-16
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
PublicationTitleAbbrev ICECCME
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8131281
Snippet This paper approaches the problem of adaptive active noise control (ANC) as a Bayesian inverse problem. Initially, a forward model for the ANC system in the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms active noise control
adaptive control
Bayes methods
Bayesian inversion
Computational modeling
Computer simulation
Control systems
Inverse problems
Measurement uncertainty
Probability density function
Title Practical Active Noise Control Algorithms in Bayesian Inversion Framework
URI https://ieeexplore.ieee.org/document/9988219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5ziHhS2cRvIni025q0SXOcZcMdHDvssNtI0jda0Fb2IfjvzdvWieDFWwiBwBPI-_k8LyF3KuKW6wFW_TkLImNkoCHBZgepQ5cI61Q9bEJOp8lioWYtcr_jwgBA1XwGPVxWtfystFtMlfV9aJAw1Pjck1LUXK0DctvIZvYn6ShNn0beRR4gA4WxXnP-1-CUym6Mj_534zHp_hDw6GxnWk5IC4oOmdTaQh5UOqx-KTot8zXQtO42p8PX59KH-i9va5oX9EF_AhIkKSppVDkxOv5uxOqS-Xg0Tx-DZhJCkEfeA1YavJ3hPhRjaFCstMYZj2UUZ9IyE7IsxnJgJmwWJ9wl3BijjBBKaoDYOX5K2kVZwBmhQhgVGu_ESR1H3IHSDEmUllkBWIw-Jx1EYflea10sGwAu_t6-JIcINHLzQnFF2pvVFq7Jvv3Y5OvVTfVAX-4mktg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGH4ZKupJZRO_jeDRbmvSps1xlo0Nt7LDDruNJE21oK3sQ_Dfm7etE8GLtxAIgSeQ9_N5XoB74THNZBer_ow6nlKBI02IzQ6BdNOQ61RUwyaCOA7nczFtwMOWC2OMKZvPTBuXZS0_KfQGU2UdGxqEFDU-d3FylluxtfbhrhbO7IyifhRN-tZJ7iIHhdJ2feLX6JTScgyO_nfnMbR-KHhkujUuJ9AweRNGlbqQhZX0yn-KxEW2MiSq-s1J7_W5sMH-y9uKZDl5lJ8GKZIEtTTKrBgZfLditWA26M-ioVPPQnAyz_rAQhpraZgNxiiaFB1olSqLpucngabKpYmPBcGE68QPWRoypZRQnItAGuOnKTuFnbzIzRkQzpVwlXXjAul7LDVCUqRRaqq5wXL0OTQRhcV7pXaxqAG4-Hv7Fg6Gs8l4MR7FT5dwiKAjU8_lV7CzXm7MNezpj3W2Wt6Uj_UFwZ6WHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Electrical%2C+Computer%2C+Communications+and+Mechatronics+Engineering+%28ICECCME%29&rft.atitle=Practical+Active+Noise+Control+Algorithms+in+Bayesian+Inversion+Framework&rft.au=Ardekani%2C+Iman&rft.au=Sharifzadeh%2C+Hamid&rft.au=Pour%2C+Soheil&rft.date=2022-11-16&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICECCME55909.2022.9988219&rft.externalDocID=9988219