A Weight Vector Bi-Objective Evolutionary Algorithm with Bi-criterion Evolution for Many-Objective Optimization

In the multi-objective optimization process, its main purpose is to obtain Pareto non-dominated solutions with well convergence and diversity, but in most cases the convergence and diversity of solutions are conflicting. In order to solve this problem, this paper proposes a new convergence and diver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS) S. 273 - 279
Hauptverfasser: Wang, Jiangtao, Chen, Hanning
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 29.07.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the multi-objective optimization process, its main purpose is to obtain Pareto non-dominated solutions with well convergence and diversity, but in most cases the convergence and diversity of solutions are conflicting. In order to solve this problem, this paper proposes a new convergence and diversity evaluation method to convert the multi-objective optimization problem into a bi-goal, more effectively evaluate the dominant relationship between individuals through the weight vectors, and then increase the selection pressure. We introduce the bi-criterion evolution can better balance the convergence and diversity of Pareto optimal solutions. Based on the proposed method, a new multi-objective optimization algorithm BiGE-BEW is proposed. Experimental results show that the proposed algorithm shows strong competitiveness in solving multi-objective optimization problems and greatly improves the performance of algorithms for solving multi-objective optimization problems.
AbstractList In the multi-objective optimization process, its main purpose is to obtain Pareto non-dominated solutions with well convergence and diversity, but in most cases the convergence and diversity of solutions are conflicting. In order to solve this problem, this paper proposes a new convergence and diversity evaluation method to convert the multi-objective optimization problem into a bi-goal, more effectively evaluate the dominant relationship between individuals through the weight vectors, and then increase the selection pressure. We introduce the bi-criterion evolution can better balance the convergence and diversity of Pareto optimal solutions. Based on the proposed method, a new multi-objective optimization algorithm BiGE-BEW is proposed. Experimental results show that the proposed algorithm shows strong competitiveness in solving multi-objective optimization problems and greatly improves the performance of algorithms for solving multi-objective optimization problems.
Author Chen, Hanning
Wang, Jiangtao
Author_xml – sequence: 1
  givenname: Jiangtao
  surname: Wang
  fullname: Wang, Jiangtao
  email: w_jiangtao0602@163.com
  organization: Tiangong University,School of Artificial Intelligence,Tianjin,China
– sequence: 2
  givenname: Hanning
  surname: Chen
  fullname: Chen, Hanning
  email: perfect_chn@hotmail.com
  organization: Tiangong University,School of Computer Science and Technology,Tianjin,China
BookMark eNpNkF9LwzAUxSPog5t-Al_yBTqb_8ljLVMLkwoOfRxpdrNF2mbUOpmf3gwH-nLvPZzDD86doPM-9oAQJvmMkNzcVuVzVb4IQSWf0ZzSmdGK6VydoQmRUnCpkrxEscBvEDbbEb-CG-OA70JWN-_pDnvA831sP8cQezsccNFu4hDGbYe_0jwGXZIwJPsviH1iPNn-8I9S78bQhW979K_QhbftB1yf9hQt7-fL8jFb1A9VWSyywDXJ1koZBsQ1RBgvNFeEa2e9FE56YSRXwlNOndFa2DU4o6xvOGPSSgeMgGRTdPOLDQCw2g2hSw1WpxewH7VUWNY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPICS55264.2022.9873807
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665467738
9781665467735
EndPage 279
ExternalDocumentID 9873807
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i481-d7793e1cb159f5847148caf65c6f596475f242c9885adec97afb4336a6ce31e63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i481-d7793e1cb159f5847148caf65c6f596475f242c9885adec97afb4336a6ce31e63
PageCount 7
ParticipantIDs ieee_primary_9873807
PublicationCentury 2000
PublicationDate 2022-July-29
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS)
PublicationTitleAbbrev ICPICS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8020458
Snippet In the multi-objective optimization process, its main purpose is to obtain Pareto non-dominated solutions with well convergence and diversity, but in most...
SourceID ieee
SourceType Publisher
StartPage 273
SubjectTerms bi-criterion evolution
Bi-goal evolution
Convergence
convergence and diversity estimation
Diversity methods
Estimation
Evolutionary computation
many-objective optimization
multi-objective optimization
Optimization
Pareto optimization
Title A Weight Vector Bi-Objective Evolutionary Algorithm with Bi-criterion Evolution for Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/9873807
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG6AePCkBox7evBoYbZuRyQQOQgkEuVG2k6rGJkxCCT-e1-HETTx4q1pXtqky1u-9nsPoWsWOQVHQRHDuSYJjRURJpVEgbeguUgsTV1RbIIPBmIykaMKutlyYay1xecz2_TN4i0_zc3KQ2UtiI99fvQqqnLONlyt7885gWz1O6N-54FSMPEQ90VRsxT_VTelMBu9g_9NeIgaO_4dHm0tyxGq2KyO8jZ-KnBM_Fgg7fh2Rob6daOwcHddniG1-MTtt-ccgv6XOfYwqxcE3eCTMufZThCDu4rvQRf8GGUICmReMjMbaNzrjjt3pCyXQGaJCEnK4arZ0GhwUJx__IRAxyjHqGGOer4pdWCOjRSCqtQayZXTSRwzxYyNQ8viY1TL8syeIJxqKwKjqKNhnGgpVWyEAUfDBloyE9BTVPdrNX3fJMSYlst09nf3Odr32-EB0UheoNpysbKXaM-sl7OPxVWxi19PnqIA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFH5BNNGTGjDu9uDRwmydaY9IIBDZEolyI22nRYzMGAQS_73tMIImXrw1TZeky1u-9nsP4Db0NDdHgWMZRQIHxOeYyphhbqwFEdFAkVhnySaiXo-ORmxQgLsNF0YplX0-UxVbzN7y41QuLVRWNf6xjY--A7s2c1bO1vr-nuOwars-aNcfCTFK3nh-nlfJO_zKnJIpjubh_6Y8gvKWgYcGG91yDAWVlCCtoecMyURPGdaO7qe4L17XIgs1Vvkp4vNPVHubpMbtf5khC7TahkY62LDMabJtiIzBirpGGvwYpW9EyCznZpZh2GwM6y2cJ0zA04C6OI7MZVOuFMZE0fb507g6kuuQyFATyzgl2ihkySglPFaSRVyLwPdDHkrluyr0T6CYpIk6BRQLRR3JiSauHwjGuC-pNKaGcgQLpUPOoGTXavy-Dokxzpfp_O_qG9hvDbudcafde7iAA7s1Fh712CUUF_OluoI9uVpMP-bX2Y5-Aer7pUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+4th+International+Conference+on+Power%2C+Intelligent+Computing+and+Systems+%28ICPICS%29&rft.atitle=A+Weight+Vector+Bi-Objective+Evolutionary+Algorithm+with+Bi-criterion+Evolution+for+Many-Objective+Optimization&rft.au=Wang%2C+Jiangtao&rft.au=Chen%2C+Hanning&rft.date=2022-07-29&rft.pub=IEEE&rft.spage=273&rft.epage=279&rft_id=info:doi/10.1109%2FICPICS55264.2022.9873807&rft.externalDocID=9873807