Burer-Monteiro ADMM for Large-scale Diagonally Constrained SDPs
We propose a bilinear decomposition for the Burer-Monteiro method for semidefinite programming and combine it with the Alternating Direction Method of Multipli-ers. Bilinear decomposition reduces the degree of the augmented Lagrangian from four to two, which makes each of the sub-problems a quadrati...
Uloženo v:
| Vydáno v: | 2022 European Control Conference (ECC) s. 66 - 71 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
EUCA
12.07.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a bilinear decomposition for the Burer-Monteiro method for semidefinite programming and combine it with the Alternating Direction Method of Multipli-ers. Bilinear decomposition reduces the degree of the augmented Lagrangian from four to two, which makes each of the sub-problems a quadratic programming and hence computationally efficient. Our approach is able to solve a class of large-scale SDPs with diagonal constraints. We prove that our ADMM algorithm converges globally to the set of first-order stationary points, and show empirically that the algorithm returns a globally optimal solution for diagonally constrained SDPs. |
|---|---|
| DOI: | 10.23919/ECC55457.2022.9838160 |