Honey Badger Algorithm and Chef-based Optimization Algorithm for Multilevel Thresholding Image Segmentation
Image segmentation has an important role in image processing and computer vision and it is widely used in numerous applications, including feature extraction, pattern recognition, scene analysis, object tracking. Due to its simplicity and effectiveness, multilevel thresholding approach to image segm...
Uloženo v:
| Vydáno v: | 2022 30th Telecommunications Forum (TELFOR) s. 1 - 4 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
15.11.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image segmentation has an important role in image processing and computer vision and it is widely used in numerous applications, including feature extraction, pattern recognition, scene analysis, object tracking. Due to its simplicity and effectiveness, multilevel thresholding approach to image segmentation has gained increased research attention in recent years. In this paper, the ability of two recently proposed metaheuristic algorithms, Honey badger algorithm and Chef-based optimization algorithm to ascertain the optimal threshold values based on Kapur's entropy is systematically examined. The performance of the two multilevel thresholding image segmentation methods are assessed on a dataset of nine standard benchmark images. Based on a fixed number of independent runs, for each test image and a given number of thresholds, the multilevel thresholding performance is reported using the mean and standard deviation of Kapur's entropy as well as the best objective function value and the associated threshold values. |
|---|---|
| AbstractList | Image segmentation has an important role in image processing and computer vision and it is widely used in numerous applications, including feature extraction, pattern recognition, scene analysis, object tracking. Due to its simplicity and effectiveness, multilevel thresholding approach to image segmentation has gained increased research attention in recent years. In this paper, the ability of two recently proposed metaheuristic algorithms, Honey badger algorithm and Chef-based optimization algorithm to ascertain the optimal threshold values based on Kapur's entropy is systematically examined. The performance of the two multilevel thresholding image segmentation methods are assessed on a dataset of nine standard benchmark images. Based on a fixed number of independent runs, for each test image and a given number of thresholds, the multilevel thresholding performance is reported using the mean and standard deviation of Kapur's entropy as well as the best objective function value and the associated threshold values. |
| Author | Turajlic, Emir Buza, Emir Akagic, Amila |
| Author_xml | – sequence: 1 givenname: Emir surname: Turajlic fullname: Turajlic, Emir email: eturajlic@etf.unsa.ba organization: University of Sarajevo,Faculty of Electrical Engineering,Sarajevo,Bosnia and Herzegovina – sequence: 2 givenname: Emir surname: Buza fullname: Buza, Emir email: ebuza@etf.unsa.ba organization: University of Sarajevo,Faculty of Electrical Engineering,Sarajevo,Bosnia and Herzegovina – sequence: 3 givenname: Amila surname: Akagic fullname: Akagic, Amila email: aakagic@etf.unsa.ba organization: University of Sarajevo,Faculty of Electrical Engineering,Sarajevo,Bosnia and Herzegovina |
| BookMark | eNpNj81Og0AUhcdEF7b6BG7mBcC5wGVmlpW0tgmGRNk3A3OBifw0gCb16SW2Czfn25zvJGfFbvuhJ8Y4CB9A6Od8m-6yd4xBST8QQeBrrUIp8YatII4xkoEM4Z597hftzF-MrWnkm7YeRjc3HTe95UlDlVeYiSzPTrPr3I-Z3dD_a1XDyN--2tm19E0tz5uRpmZoretrfuhMTfyD6o76-U98YHeVaSd6vHLN8t02T_Zemr0ekk3quUiBp6AoQJSRUpGVRpSAACVKNGgxjGVhdWgx1rhkJLRBGSxWABUaI2IUKlyzp8usI6LjaXSdGc_H6_3wF_XyVhM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/TELFOR56187.2022.9983775 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665472731 9781665472739 9781665472722 1665472723 |
| EndPage | 4 |
| ExternalDocumentID | 9983775 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i481-81bb10c4884d7a0c1511c575a5d5367bd93d56953d5409a57248121f5aa065083 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:19 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i481-81bb10c4884d7a0c1511c575a5d5367bd93d56953d5409a57248121f5aa065083 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9983775 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov.-15 |
| PublicationDateYYYYMMDD | 2022-11-15 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 30th Telecommunications Forum (TELFOR) |
| PublicationTitleAbbrev | TELFOR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8131367 |
| Snippet | Image segmentation has an important role in image processing and computer vision and it is widely used in numerous applications, including feature extraction,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Chef-based optimization algorithm Entropy Honey badger algorithm Image analysis Image segmentation Kapur's entropy Linear programming Metaheuristics Multilevel thresholding Telecommunications Thresholding (Imaging) |
| Title | Honey Badger Algorithm and Chef-based Optimization Algorithm for Multilevel Thresholding Image Segmentation |
| URI | https://ieeexplore.ieee.org/document/9983775 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NHszVN0rRHHRsTZA7sYbeRJuk2XDvZD8H_3pesTgUvXkpbUkrfo3nfl7zvPYRuGY-5CnlENLOGcJuHJDNaE5tnNMgYXOfcN5uQw2E8HiejGrrba2GstT75zLbdqd_LN0u9dUtlHaAGTEpRR3Up5U6r9ZWcEySdtPcExAnwQCyB94Vhuxr-q2-KDxv9o_-98Bi1vvV3eLSPLCeoZssmeh0sS_uBH5SZ2hW-X0yXwOtnBValwd2ZzYkLSAY_wxxQVOLKH6MAm2Ivtl24LCGcggvX1c4TfixgUsEvdlpUQqSyhdJ-L-0OSNUqgcx5TAlgTzCthp-RG6kCDWGcagBiShjBIpmZhBkRJQKOwOeUkCE8FdJcKOUhGjtFjRI-4gxhV0DNMCeZdZX1dJxRaUSmkyDRStEwOEdNZ6fJ264YxqQy0cXfty_RoXOFE-9RcYUam9XWXqMD_b6Zr1c33oOf_0-fJw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmuhJDRjf7sGjhe6LbY9KIBARSeyBG9nuboFIi-Fh4r93tlTUxIuXpm26aTqT7nzf7nwzCN0yHnBFecPTzBqP24R6sdHas0lM_JjBdcLzZhOy3w-Gw3BQQndbLYy1Nk8-szV3mu_lm7leu6WyOlADJqXYQbuCc0o2aq2v9Bw_rEetHlAnQASBBOZHaa0Y8KtzSh442of_e-URqn4r8PBgG1uOUclmFfTamWf2Az8oM7YLfD8bz4HZT1KsMoObE5t4LiQZ_AyzQFrIK388BegU53LbmcsTwhE4cVnsPeFuCtMKfrHjtJAiZVUUtVtRs-MVzRK8KQ-IB-gTjKvhd-RGKl9DICcaoJgSRrCGjE3IjGiEAo7A6JSQFEZRkgilcpDGTlA5g484RdiVUDPMiWZdbT0dxEQaEevQD7VShPpnqOLsNHrblMMYFSY6__v2DdrvRE-9Ua_bf7xAB84tTspHxCUqrxZre4X29Ptqulxc5978BHVCom4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+30th+Telecommunications+Forum+%28TELFOR%29&rft.atitle=Honey+Badger+Algorithm+and+Chef-based+Optimization+Algorithm+for+Multilevel+Thresholding+Image+Segmentation&rft.au=Turajlic%2C+Emir&rft.au=Buza%2C+Emir&rft.au=Akagic%2C+Amila&rft.date=2022-11-15&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTELFOR56187.2022.9983775&rft.externalDocID=9983775 |