Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images

Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced, and powerful tool to record the electrical signals of the heart and detect severe cardiovascular diseases. ECG interpretation is generally don...

Full description

Saved in:
Bibliographic Details
Published in:2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET) pp. 222 - 226
Main Authors: Nithya, S, Rani, M. Mary Shanthi
Format: Conference Proceeding
Language:English
Published: IEEE 22.09.2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced, and powerful tool to record the electrical signals of the heart and detect severe cardiovascular diseases. ECG interpretation is generally done by the cardiologist which is time-consuming and sometimes may lead to the wrong diagnosis. Moreover, numerous arrhythmia heartbeats remain unexplored. The arrhythmia record has an expeditious and divergent ECG. Prompt diagnosis of arrhythmia can reduce the mortality rate. In this paper, we have investigated the application of a Stacked Variational Autoencoder (SVAE) for the automatic diagnosis of arrhythmia from ECG signals. Furthermore, the augmented dat aset is used for training the model, to resolve the imbalance in the classes. The proposed model reached an overall accuracy of 98.96% and sensitivity of 97.32%. SVAE classified twelve classes of cardiac arrhythmia including normal sinus rhythm.
AbstractList Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced, and powerful tool to record the electrical signals of the heart and detect severe cardiovascular diseases. ECG interpretation is generally done by the cardiologist which is time-consuming and sometimes may lead to the wrong diagnosis. Moreover, numerous arrhythmia heartbeats remain unexplored. The arrhythmia record has an expeditious and divergent ECG. Prompt diagnosis of arrhythmia can reduce the mortality rate. In this paper, we have investigated the application of a Stacked Variational Autoencoder (SVAE) for the automatic diagnosis of arrhythmia from ECG signals. Furthermore, the augmented dat aset is used for training the model, to resolve the imbalance in the classes. The proposed model reached an overall accuracy of 98.96% and sensitivity of 97.32%. SVAE classified twelve classes of cardiac arrhythmia including normal sinus rhythm.
Author Nithya, S
Rani, M. Mary Shanthi
Author_xml – sequence: 1
  givenname: S
  surname: Nithya
  fullname: Nithya, S
  email: nithyaselvaraj2019@gmail.com
  organization: The Gandhigram Rural Institute,Department of Computer Science and Applications,Dindugal,India
– sequence: 2
  givenname: M. Mary Shanthi
  surname: Rani
  fullname: Rani, M. Mary Shanthi
  email: drmaryshanthi@gmail.com
  organization: The Gandhigram Rural Institute,Department of Computer Science and Applications,Dindugal,India
BookMark eNotkLFugzAYhF2pHdo0T9DlfwFSG7CNR-TSFClSh6CukTE2_GqAyBBVefvSJtPp7jvdcE_kfhgHRwgwumGMqtdSl2VRcZ7ybBPTON4oJSSX_I6slcyYEAsRPGGP5LSfjf12DXyZgGbGcTBHyM_z6AY7Ni4ADjB3DvTRTBN6tP8dGD1oExo0FvIQusvc9WjgPOHQQqG3sMd2GZrgB-cO4rfoLyt707rpmTz4hbj1TVekei8q_RHtPrelzncRphmNEuub2HhqmVqskElmfU2ZZELRlMlYLIFIRaZUI-o0qWmdCcuk9EYyXjc-WZGX6yw65w6ngL0Jl8PthuQX3ttXcA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIIET55458.2022.9967575
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665456531
1665456531
EndPage 226
ExternalDocumentID 9967575
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i480-3cfd2af0c194806738cfb01716904172638c646899d6b43b0b86c177fa715bdf3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:22 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i480-3cfd2af0c194806738cfb01716904172638c646899d6b43b0b86c177fa715bdf3
PageCount 5
ParticipantIDs ieee_primary_9967575
PublicationCentury 2000
PublicationDate 2022-Sept.-22
PublicationDateYYYYMMDD 2022-09-22
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET)
PublicationTitleAbbrev ICIIET
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8077505
Snippet Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced,...
SourceID ieee
SourceType Publisher
StartPage 222
SubjectTerms 2DECG
Arrhythmia
Deep learning
ECG
Electrocardiography
Heart beat
Image resolution
Sensitivity
Stacked Variational Autoencoder
Technological innovation
Training
Title Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images
URI https://ieeexplore.ieee.org/document/9967575
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFA8qO-y0DR375h12XLUfsWmP0ulWGCJMxJs0X9qDVWod7L9fXuwcg112S0KgkDR5v_fye79HyKOmglMpqMNirh3KuXB4GPUdmsWCB6j3YkMDszc2HkfzeTxpkKdjLoxSypLPVBeb9i1fbsQeQ2U9g82ZgRdN0mSMHXK1vsk5btxLkzQdTvv4EmT8Pt_v1tN_1U2xZmN09r8PnpPOT_4dTI6W5YI0VNEmW4MLzZGTMDPubR3Cg8G-2qAUpVQl5AUYNAe2zCUSgOwc2GhI7F8gYFCWq89qtc4zQLr7EobJC7znS5RQBgzIgv_s4Fi6NrfMrkOmo-E0eXXqeglOTiNzmwot_Uy7wotNF6t5Cs0PcjguNTjFnDQR0tA4WDLkNOAuj0LhMaYz5vW51MElaRWbQl0RCIwbxTSNqK9QT4ZFyti6LAhoyCMmPXVN2rhYi-1BEWNRr9PN38O35BT3A1kWvn9HWlW5V_fkRHxU-a58sNv4BUGVnxY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjg63r1u1IJsgiEhIXwo2sv2AHNjKGif-9bZkYEy_e1mbNknbt-97r974HwKPEjGLOsEVCKi1MKbOoH3gWTkNGXa33YkID0xEZj4PZLJw0wNM-F0YIYchnoqMfzV0-L9hWh8q6CpsTBS8OwKGHMXJ22Vrf9Bw77MZRHPcTT98FKc8PoU494FflFGM4Bqf_--QZaP9k4MHJ3racg4bIW2CtkKHadBxOlYNbB_Fgb1sVWoySixJmOVR4DppCl5oCZN6BhYSR-Q8Y7JXl8rNarrIUasL7AvajF_ieLbSIMtQhWYieLd0Xr9Q5s2mDZNBPoqFVV0ywMhyo85RJjlJpMydUTV3Pk0m6E8SxsUIqaq8xH_vKxeI-xS61aeAzhxCZEsejXLoXoJkXubgE0FWOFJE4wEhoRRkSCGXtUtfFPg0Id8QVaOnJmq93mhjzep6u_-5-AMfD5G00H8Xj1xtwotdGcy4QugXNqtyKO3DEPqpsU96bJf0Cty6iXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Intelligent+Innovations+in+Engineering+and+Technology+%28ICIIET%29&rft.atitle=Stacked+Variational+Autoencoder+in+the+Classification+of+Cardiac+Arrhythmia+using+ECG+Signals+with+2D-ECG+Images&rft.au=Nithya%2C+S&rft.au=Rani%2C+M.+Mary+Shanthi&rft.date=2022-09-22&rft.pub=IEEE&rft.spage=222&rft.epage=226&rft_id=info:doi/10.1109%2FICIIET55458.2022.9967575&rft.externalDocID=9967575