Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images
Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced, and powerful tool to record the electrical signals of the heart and detect severe cardiovascular diseases. ECG interpretation is generally don...
Saved in:
| Published in: | 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET) pp. 222 - 226 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
22.09.2022
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced, and powerful tool to record the electrical signals of the heart and detect severe cardiovascular diseases. ECG interpretation is generally done by the cardiologist which is time-consuming and sometimes may lead to the wrong diagnosis. Moreover, numerous arrhythmia heartbeats remain unexplored. The arrhythmia record has an expeditious and divergent ECG. Prompt diagnosis of arrhythmia can reduce the mortality rate. In this paper, we have investigated the application of a Stacked Variational Autoencoder (SVAE) for the automatic diagnosis of arrhythmia from ECG signals. Furthermore, the augmented dat aset is used for training the model, to resolve the imbalance in the classes. The proposed model reached an overall accuracy of 98.96% and sensitivity of 97.32%. SVAE classified twelve classes of cardiac arrhythmia including normal sinus rhythm. |
|---|---|
| AbstractList | Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced, and powerful tool to record the electrical signals of the heart and detect severe cardiovascular diseases. ECG interpretation is generally done by the cardiologist which is time-consuming and sometimes may lead to the wrong diagnosis. Moreover, numerous arrhythmia heartbeats remain unexplored. The arrhythmia record has an expeditious and divergent ECG. Prompt diagnosis of arrhythmia can reduce the mortality rate. In this paper, we have investigated the application of a Stacked Variational Autoencoder (SVAE) for the automatic diagnosis of arrhythmia from ECG signals. Furthermore, the augmented dat aset is used for training the model, to resolve the imbalance in the classes. The proposed model reached an overall accuracy of 98.96% and sensitivity of 97.32%. SVAE classified twelve classes of cardiac arrhythmia including normal sinus rhythm. |
| Author | Nithya, S Rani, M. Mary Shanthi |
| Author_xml | – sequence: 1 givenname: S surname: Nithya fullname: Nithya, S email: nithyaselvaraj2019@gmail.com organization: The Gandhigram Rural Institute,Department of Computer Science and Applications,Dindugal,India – sequence: 2 givenname: M. Mary Shanthi surname: Rani fullname: Rani, M. Mary Shanthi email: drmaryshanthi@gmail.com organization: The Gandhigram Rural Institute,Department of Computer Science and Applications,Dindugal,India |
| BookMark | eNotkLFugzAYhF2pHdo0T9DlfwFSG7CNR-TSFClSh6CukTE2_GqAyBBVefvSJtPp7jvdcE_kfhgHRwgwumGMqtdSl2VRcZ7ybBPTON4oJSSX_I6slcyYEAsRPGGP5LSfjf12DXyZgGbGcTBHyM_z6AY7Ni4ADjB3DvTRTBN6tP8dGD1oExo0FvIQusvc9WjgPOHQQqG3sMd2GZrgB-cO4rfoLyt707rpmTz4hbj1TVekei8q_RHtPrelzncRphmNEuub2HhqmVqskElmfU2ZZELRlMlYLIFIRaZUI-o0qWmdCcuk9EYyXjc-WZGX6yw65w6ngL0Jl8PthuQX3ttXcA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIIET55458.2022.9967575 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665456531 1665456531 |
| EndPage | 226 |
| ExternalDocumentID | 9967575 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i480-3cfd2af0c194806738cfb01716904172638c646899d6b43b0b86c177fa715bdf3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:22 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i480-3cfd2af0c194806738cfb01716904172638c646899d6b43b0b86c177fa715bdf3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9967575 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept.-22 |
| PublicationDateYYYYMMDD | 2022-09-22 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET) |
| PublicationTitleAbbrev | ICIIET |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8077505 |
| Snippet | Cardiac Arrhythmia is an endangered signal to human life. Most arrhythmias are shortfalls of symptoms. Electrocardiogram (ECG) is a non-invasive, low-priced,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 222 |
| SubjectTerms | 2DECG Arrhythmia Deep learning ECG Electrocardiography Heart beat Image resolution Sensitivity Stacked Variational Autoencoder Technological innovation Training |
| Title | Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images |
| URI | https://ieeexplore.ieee.org/document/9967575 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFA8qO-y0DR375h12XLUfsWmP0ulWGCJMxJs0X9qDVWod7L9fXuwcg112S0KgkDR5v_fye79HyKOmglMpqMNirh3KuXB4GPUdmsWCB6j3YkMDszc2HkfzeTxpkKdjLoxSypLPVBeb9i1fbsQeQ2U9g82ZgRdN0mSMHXK1vsk5btxLkzQdTvv4EmT8Pt_v1tN_1U2xZmN09r8PnpPOT_4dTI6W5YI0VNEmW4MLzZGTMDPubR3Cg8G-2qAUpVQl5AUYNAe2zCUSgOwc2GhI7F8gYFCWq89qtc4zQLr7EobJC7znS5RQBgzIgv_s4Fi6NrfMrkOmo-E0eXXqeglOTiNzmwot_Uy7wotNF6t5Cs0PcjguNTjFnDQR0tA4WDLkNOAuj0LhMaYz5vW51MElaRWbQl0RCIwbxTSNqK9QT4ZFyti6LAhoyCMmPXVN2rhYi-1BEWNRr9PN38O35BT3A1kWvn9HWlW5V_fkRHxU-a58sNv4BUGVnxY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjg63r1u1IJsgiEhIXwo2sv2AHNjKGif-9bZkYEy_e1mbNknbt-97r974HwKPEjGLOsEVCKi1MKbOoH3gWTkNGXa33YkID0xEZj4PZLJw0wNM-F0YIYchnoqMfzV0-L9hWh8q6CpsTBS8OwKGHMXJ22Vrf9Bw77MZRHPcTT98FKc8PoU494FflFGM4Bqf_--QZaP9k4MHJ3racg4bIW2CtkKHadBxOlYNbB_Fgb1sVWoySixJmOVR4DppCl5oCZN6BhYSR-Q8Y7JXl8rNarrIUasL7AvajF_ieLbSIMtQhWYieLd0Xr9Q5s2mDZNBPoqFVV0ywMhyo85RJjlJpMydUTV3Pk0m6E8SxsUIqaq8xH_vKxeI-xS61aeAzhxCZEsejXLoXoJkXubgE0FWOFJE4wEhoRRkSCGXtUtfFPg0Id8QVaOnJmq93mhjzep6u_-5-AMfD5G00H8Xj1xtwotdGcy4QugXNqtyKO3DEPqpsU96bJf0Cty6iXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Intelligent+Innovations+in+Engineering+and+Technology+%28ICIIET%29&rft.atitle=Stacked+Variational+Autoencoder+in+the+Classification+of+Cardiac+Arrhythmia+using+ECG+Signals+with+2D-ECG+Images&rft.au=Nithya%2C+S&rft.au=Rani%2C+M.+Mary+Shanthi&rft.date=2022-09-22&rft.pub=IEEE&rft.spage=222&rft.epage=226&rft_id=info:doi/10.1109%2FICIIET55458.2022.9967575&rft.externalDocID=9967575 |