Very light magnetized jets on large scales – I. Evolution and magnetic fields

Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Monthly notices of the Royal Astronomical Society Ročník 400; číslo 4; s. 1785 - 1802
Hlavní autori: Gaibler, V., Krause, M., Camenzind, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 21.12.2009
Wiley-Blackwell
Oxford University Press
Predmet:
ISSN:0035-8711, 1365-2966
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The magnetohydrodynamic code nirvana is used to evolve the simulation, using the constrained transport method. The density contrasts are varied between η= 10−1 and 10−4 with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium non-magnetic. We find magnetic fields with plasma β∼ 10 already stabilize and widen the jet head. Furthermore, they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin–Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low eccentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.
AbstractList Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The magnetohydrodynamic code nirvana is used to evolve the simulation, using the constrained transport method. The density contrasts are varied between η= 10−1 and 10−4 with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium non-magnetic. We find magnetic fields with plasma β∼ 10 already stabilize and widen the jet head. Furthermore, they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin-Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low eccentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.
ABSTRACT Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The magnetohydrodynamic code nirvana is used to evolve the simulation, using the constrained transport method. The density contrasts are varied between η= 10−1 and 10−4 with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium non‐magnetic. We find magnetic fields with plasma β∼ 10 already stabilize and widen the jet head. Furthermore, they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin–Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self‐similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self‐similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self‐similar models can no longer be applied. Bow shocks are found to be of low eccentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.
Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The magnetohydrodynamic code nirvana is used to evolve the simulation, using the constrained transport method. The density contrasts are varied between E = 10-1 and 10-4 with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium non-magnetic. We find magnetic fields with plasma b 6 10 already stabilize and widen the jet head. Furthermore, they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin-Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low eccentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.
Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The magnetohydrodynamic code nirvana is used to evolve the simulation, using the constrained transport method. The density contrasts are varied between η= 10-1 and 10-4 with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium non-magnetic. We find magnetic fields with plasma β∼ 10 already stabilize and widen the jet head. Furthermore, they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin-Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low eccentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities. [PUBLICATION ABSTRACT]
Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The magnetohydrodynamic code nirvana is used to evolve the simulation, using the constrained transport method. The density contrasts are varied between eta = 10-1 and 10-4 with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium non-magnetic. We find magnetic fields with plasma beta similar to 10 already stabilize and widen the jet head. Furthermore, they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin-Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low eccentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.
Author Gaibler, V.
Camenzind, M.
Krause, M.
Author_xml – sequence: 1
  givenname: V.
  surname: Gaibler
  fullname: Gaibler, V.
  email: vgaibler@mpe.mpg.de, vgaibler@mpe.mpg.de
  organization: Landessternwarte, Zentrum für Astronomie, Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
– sequence: 2
  givenname: M.
  surname: Krause
  fullname: Krause, M.
  organization: Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany
– sequence: 3
  givenname: M.
  surname: Camenzind
  fullname: Camenzind, M.
  organization: Landessternwarte, Zentrum für Astronomie, Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22224381$$DView record in Pascal Francis
BookMark eNqFkd2K1DAYhoOs4OzoPQRBz1qTL3_tiSDLurMw64L4s3gSMmk6pmbasWl1xiPvwTv0Skx31jlQxO8kgfd5PkjeU3TSdq1DCFOS0zTPmpwyKTIopcyBkDKnQoLId_fQ7BicoBkhTGSFovQBOo2xIYRwBnKGrt-5fo-DX38c8MasWzf4b67CjRsi7locTL92OFoTXMQ_v__Alzk-_9KFcfApNW31W7K49i5U8SG6X5sQ3aO7c47evjx_c7bIltcXl2cvlpnnkoqs5nVhi8oqIStVOmGZEIpUFkQFdGUrszK0NtRxQ0FaKTiUiisoKZDErBSbo6eHvdu--zy6OOiNj9aFYFrXjVEzyRkvAP4LAmWUSGAJfPwH2HRj36ZHaCCKCVkmdI6e3EFm-pS6N631UW97vzH9XkMazoqJe37gvvrg9secEj2Vphs9daOnbvRUmr4tTe_01avXt9e0gB0WdOP2H3r2l56s7GD5OLjd0TP9Jy0VU0Ivbj7oi6sbkMvyvV6wX-fYq7w
CODEN MNRAA4
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 RAS 2009
2009 The Authors. Journal compilation © 2009 RAS
2015 INIST-CNRS
Journal compilation © 2009 RAS
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 RAS 2009
– notice: 2009 The Authors. Journal compilation © 2009 RAS
– notice: 2015 INIST-CNRS
– notice: Journal compilation © 2009 RAS
DBID BSCLL
IQODW
8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2009.15625.x
DatabaseName Istex
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Technology Research Database
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1802
ExternalDocumentID 1918340441
22224381
MNR15625
10.1111/j.1365-2966.2009.15625.x
ark_67375_HXZ_GMX26L9W_H
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACBWZ
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGQPQ
AGSYK
AGXDD
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
AAHHS
AASNB
ABJNI
ACCFJ
ADRIX
AEEZP
AEQDE
AFXEN
AIWBW
AJBDE
BCRHZ
EAD
EAP
ESX
RHF
ROX
WRC
2WC
ABFSI
ABSMQ
ACBNA
ACFRR
ACUTJ
AETEA
AFFNX
AGMDO
AHGBF
APJGH
ASAOO
ATDFG
CXTWN
DFGAJ
E.L
MBTAY
O0~
OHT
UQL
VOH
ZY4
IQODW
8FD
H8D
L7M
O8X
7TG
KL.
ID FETCH-LOGICAL-i4615-f4f8c8dc756d79e5c35570dc25d21bcdaba1fa1e4a126c6542974729120c25b73
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272532100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Thu Oct 02 09:43:42 EDT 2025
Fri Jul 11 08:31:52 EDT 2025
Sun Nov 30 05:26:39 EST 2025
Mon Jul 21 09:15:51 EDT 2025
Sun Sep 21 06:22:59 EDT 2025
Wed Sep 11 04:49:47 EDT 2024
Sat Sep 20 11:01:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MHD
galaxies: clusters: general
magnetic fields
galaxies: jets
methods: numerical
radio continuum: galaxies
Plasma
Magnetohydrodynamics
Eccentricity
Galaxies
Kelvin Helmholtz instability
Thermalization
Numerical method
Aspect ratio
Helical field
Continuum
Dynamics
Cosmic radio sources
Magnetic structure
Flux conservation
Synchrotron radiation
Mach number
Discontinuity
Turbulence
Extragalactic jet
Radio galaxies
Astrophysical jets
Galaxy clusters
Morphology
Models
Magnetic fields
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i4615-f4f8c8dc756d79e5c35570dc25d21bcdaba1fa1e4a126c6542974729120c25b73
Notes istex:1095C24988C349EBA105EB533CF0F1744C671585
ark:/67375/HXZ-GMX26L9W-H
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/400/4/1785/5650756/mnras0400-1785.pdf
PQID 207356921
PQPubID 42411
PageCount 18
ParticipantIDs proquest_miscellaneous_36434822
proquest_miscellaneous_21310623
proquest_journals_207356921
pascalfrancis_primary_22224381
wiley_primary_10_1111_j_1365_2966_2009_15625_x_MNR15625
oup_primary_10_1111_j_1365-2966_2009_15625_x
istex_primary_ark_67375_HXZ_GMX26L9W_H
PublicationCentury 2000
PublicationDate 2009-12-21
PublicationDateYYYYMMDD 2009-12-21
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-21
  day: 21
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationTitleAlternate Monthly Notices of the Royal Astronomical Society
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Oxford University Press
References 2008; 390
2007; 662
1990; 229
2007; 668
2000; 533
2001; 380
1987; 225
1984; 22
2006; 373
2008; 388
1995; 451
2008; 386
1999; 523
2008; 384
2003; 398
2004; 601
2002b; 393
2007; 379
1991; 383
2007; 376
1992; 393
2003; 402
1990
1989; 344
2007; 173
2002; 46
1997; 101
2005; 626
2005; 429
1982
2002a; 141
2006; 643
2007; 659
2006; 365
2006; 642
2006; 366
1989; 219
2002a; 579
2002b; 141
1991; 250
1986; 311
2005; 431
2005; 433
2005; 633
2005; 436
2002; 332
2008
2008; 15
1996
2006
1993
1974; 167
2008; 486
1993; 421
1998; 297
1999; 308
2007; 311
1997; 328
2005; 363
1997; 284
1997; 286
2002; 565
1982; 87
1982; 113
2007; 45
2003; 342
2001; 557
1999; 516
References_xml – start-page: 263
  year: 1993
– volume: 579
  start-page: 176
  year: 2002a
  publication-title: ApJ
– volume: 141
  start-page: 337
  year: 2002a
  publication-title: ApJS
– volume: 533
  start-page: 176
  year: 2000
  publication-title: ApJ
– volume: 46
  start-page: 393
  year: 2002
  publication-title: New Astron. Rev.
– volume: 421
  start-page: 243
  year: 1993
– volume: 219
  start-page: 63
  year: 1989
  publication-title: A&A
– volume: 662
  start-page: 835
  year: 2007
  publication-title: ApJ
– volume: 342
  start-page: 399
  year: 2003
  publication-title: MNRAS
– volume: 379
  start-page: 260
  year: 2007
  publication-title: MNRAS
– volume: 516
  start-page: 729
  year: 1999
  publication-title: ApJ
– volume: 363
  start-page: 649
  year: 2005
  publication-title: MNRAS
– volume: 436
  start-page: 503
  year: 2005
  publication-title: A&A
– start-page: 163
  year: 1982
– volume: 398
  start-page: 113
  year: 2003
  publication-title: A&A
– volume: 601
  start-page: 778
  year: 2004
  publication-title: ApJ
– start-page: 121
  year: 1982
– volume: 643
  start-page: 92
  year: 2006
  publication-title: ApJ
– volume: 344
  start-page: 89
  year: 1989
  publication-title: ApJ
– volume: 402
  start-page: 949
  year: 2003
  publication-title: A&A
– volume: 229
  start-page: 378
  year: 1990
  publication-title: A&A
– volume: 668
  start-page: 203
  year: 2007
  publication-title: ApJ
– volume: 173
  start-page: 37
  year: 2007
  publication-title: ApJS
– volume: 451
  start-page: L25
  year: 1995
  publication-title: ApJ
– volume: 225
  start-page: 1
  year: 1987
  publication-title: MNRAS
– start-page: 3
  year: 2008
– volume: 297
  start-page: 1087
  year: 1998
  publication-title: MNRAS
– volume: 311
  start-page: L63
  year: 1986
  publication-title: ApJ
– volume: 393
  start-page: 765
  year: 2002b
  publication-title: A&A
– volume: 384
  start-page: 1003
  year: 2008
  publication-title: MNRAS
– volume: 383
  start-page: 554
  year: 1991
  publication-title: ApJ
– volume: 101
  start-page: 54
  year: 1997
  publication-title: Comput. Phys. Communications
– volume: 250
  start-page: 581
  year: 1991
  publication-title: MNRAS
– start-page: 3, 234
  year: 1990
– volume: 284
  start-page: 981
  year: 1997
  publication-title: MNRAS
– volume: 328
  start-page: 12
  year: 1997
  publication-title: A&A
– volume: 659
  start-page: 1153
  year: 2007
  publication-title: ApJ
– start-page: 209
  year: 1996
– volume: 332
  start-page: 271
  year: 2002
  publication-title: MNRAS
– volume: 22
  start-page: 319
  year: 1984
  publication-title: ARA&A
– volume: 523
  start-page: L125
  year: 1999
  publication-title: ApJ
– volume: 429
  start-page: 399
  year: 2005
  publication-title: A&A
– volume: 363
  start-page: 891
  year: 2005
  publication-title: MNRAS
– volume: 15
  start-page: 67
  year: 2008
  publication-title: A&Ar
– volume: 393
  start-page: 631
  year: 1992
  publication-title: ApJ
– volume: 626
  start-page: 733
  year: 2005
  publication-title: ApJ
– volume: 376
  start-page: 465
  year: 2007
  publication-title: MNRAS
– start-page: 35
  year: 2006
– volume: 45
  start-page: 117
  year: 2007
  publication-title: ARA&A
– volume: 380
  start-page: 789
  year: 2001
  publication-title: A&A
– volume: 141
  start-page: 371
  year: 2002b
  publication-title: ApJS
– volume: 167
  start-page: 31
  year: 1974
  publication-title: MNRAS
– volume: 366
  start-page: 417
  year: 2006
  publication-title: MNRAS
– volume: 308
  start-page: 1069
  year: 1999
  publication-title: MNRAS
– volume: 113
  start-page: 285
  year: 1982
  publication-title: A&A
– volume: 388
  start-page: 1457
  year: 2008
  publication-title: MNRAS
– volume: 311
  start-page: 311
  year: 2007
  publication-title: Ap&SS
– volume: 87
  start-page: 7431
  year: 1982
  publication-title: J. Geophys. Res.
– volume: 557
  start-page: 475
  year: 2001
  publication-title: ApJ
– volume: 565
  start-page: 195
  year: 2002
  publication-title: ApJ
– volume: 431
  start-page: 45
  year: 2005
  publication-title: A&A
– volume: 386
  start-page: 337
  year: 2008
  publication-title: MNRAS
– volume: 486
  start-page: 663
  year: 2008
  publication-title: A&A
– volume: 433
  start-page: 45
  year: 2005
  publication-title: Nat
– volume: 373
  start-page: L65
  year: 2006
  publication-title: MNRAS
– volume: 390
  start-page: 595
  year: 2008
  publication-title: MNRAS
– volume: 642
  start-page: L33
  year: 2006
  publication-title: ApJ
– volume: 633
  start-page: 717
  year: 2005
  publication-title: ApJ
– volume: 365
  start-page: 11
  year: 2006
  publication-title: MNRAS
– volume: 286
  start-page: 215
  year: 1997
  publication-title: MNRAS
SSID ssj0004326
Score 2.2765863
Snippet Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and...
ABSTRACT Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology...
SourceID proquest
pascalfrancis
wiley
oup
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1785
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Fluid mechanics
galaxies: clusters: general
galaxies: jets
Magnetic fields
methods: numerical
MHD
Radio astronomy
radio continuum: galaxies
Stars & galaxies
Title Very light magnetized jets on large scales – I. Evolution and magnetic fields
URI https://api.istex.fr/ark:/67375/HXZ-GMX26L9W-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2009.15625.x
https://www.proquest.com/docview/207356921
https://www.proquest.com/docview/21310623
https://www.proquest.com/docview/36434822
Volume 400
WOSCitedRecordID wos000272532100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLbK4IA0IRighcHwAe0SUjVOUifHqRp0Eu0QKqPiEjlOMsK6pEraqt2J_8Af4rfwS3i2kzQdFI0DlyhNHMvN-_L83vPn9xB6xcyIMG6Fhh1z27A52HABTGSGF3Qpj2NGYqqKTdDh0B2Pvfet1o9qL8xiQtPUXS696X8VNVwDYYuts_8g7rpTuADnIHQ4gtjheCvBn0f5Sp8In1u_YhdpNEuuwaj8GqmFgYlgfusFSEbEW0umg6WftvWTRTksuZ5QPsp1SXErmjYsqIHZl8lKTzNBnCsqloEKRBwXIraeqSQEJSW05viwJCg3Hp63a02fs7kq7jior_XYVZReJ2XB4_ZGZEKWVSDryMSNCKSKqK25SlIdWw6o41LbRkoDS9qdp0qxVCra7nQaWLQbCtekquJPOXmLfHZ_nxiq7lWqUlP4fxVhtJmL-8YcWTMXWX4pqHDU8fvjz_7bwZh033mf_P4ddJdQxxN6dXQ2Xu_MtWTBv_qPbnLJ_jgW8JLEB76sdlzuTpkARazqrGw4Qk13StpDo4foQenI4GMFwEeoFaV7aL8S_wofYXmuImfFHtIG4J5luVzFgZu9SQK-kvz1GJ0JzGKJWbzGLBaYxVmKJWaxwiz--e07Pm3jGq0Y0Fo9xLFC6xP08c3JqNc3ykofRmKDSW3EduxyN-TU6YbUixxuicxwISdOSMyAhyxgZgxqxWYm6XJZYw3cYOKZpANtAmo9RTtplkb7CDtWIGxQM6AktkNCvNBxO4yGQccKKWOuho7k6_WnKpuLv02iGnoN779u1nCWK7GJEq6eL8XmLzV0uCGo-kEwwInIo6ehg0pyfqkuCuiBWk7XI3D3ZX0XFLxYtWNplM2hiQkeGDgp21tY4FXYYOhriEpAbBmz_9uY_cHwgzx9dtuXcoDur7_052hnls-jF-geX8ySIj-U2P8FSXXemQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+light+magnetized+jets+on+large+scales+%E2%80%93+I.+Evolution+and+magnetic+fields&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gaibler%2C+V.&rft.au=Krause%2C+M.&rft.au=Camenzind%2C+M.&rft.date=2009-12-21&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=400&rft.issue=4&rft.spage=1785&rft.epage=1802&rft_id=info:doi/10.1111%2Fj.1365-2966.2009.15625.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_GMX26L9W_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon