Evolutionary change in testes tissue composition among experimental populations of house mice
Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the test...
Uložené v:
| Vydané v: | Evolution Ročník 69; číslo 3; s. 848 - 855 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Blackwell Publishing Ltd
01.03.2015
Society for the Study of Evolution Oxford University Press |
| Predmet: | |
| ISSN: | 0014-3820, 1558-5646, 1558-5646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm-producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm-producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm-producing tissue, and consequently increased testicular efficiency. |
|---|---|
| AbstractList | Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm‐producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm‐producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm‐producing tissue, and consequently increased testicular efficiency. Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm-producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm-producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm-producing tissue, and consequently increased testicular efficiency.Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm-producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm-producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm-producing tissue, and consequently increased testicular efficiency. |
| Author | Wheeler, Samantha Yuan, Michael Yamin, Zayaputeri Garcia-Gonzalez, Francisco Thyer, Evan Firman, Renée C. Simmons, Leigh W. |
| Author_xml | – sequence: 1 givenname: Renée C. surname: Firman fullname: Firman, Renée C. email: renee.firman@uwa.edu.au organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia – sequence: 2 givenname: Francisco surname: Garcia-Gonzalez fullname: Garcia-Gonzalez, Francisco organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia – sequence: 3 givenname: Evan surname: Thyer fullname: Thyer, Evan organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia – sequence: 4 givenname: Samantha surname: Wheeler fullname: Wheeler, Samantha organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia – sequence: 5 givenname: Zayaputeri surname: Yamin fullname: Yamin, Zayaputeri organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia – sequence: 6 givenname: Michael surname: Yuan fullname: Yuan, Michael organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia – sequence: 7 givenname: Leigh W. surname: Simmons fullname: Simmons, Leigh W. organization: Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, 6009, Nedlands, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25600637$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkVFrFDEUhYNU7Lb64A9QAr74Mm0yuUlmH2XZVnGxoKuCICGbvdNmnUmmk5na_nsz3VrBEEjgfPfk5p4jchBiQEJecnbC8zrFm3jCS8XEEzLjUlaFVKAOyIwxDoWoSnZIjlLaMcbmks-fkcNSKsaU0DPyc3kTm3HwMdj-jrorGy6R-kAHTHnTwac0InWx7WLyE0ZtG8MlxdsOe99iGGxDu9iNjZ3URGNNr-KYkLbe4XPytLZNwhcP5zH5erZcL94Xq4vzD4t3q8ILDaLYWqcBhLNau9qh1SCVEyWv5Ha7AVGqSnEAx0FVIJBbYBKhFvWGSVFtKiuOydu9b9fH6zG3blqfHDaNDZibMVwpAJhsM_rmP3QXxz7k7iZKlnMuGGTq9QM1blrcmi7_NQ_I_B1cBk73wG_f4N2jzpmZEjE5EXOfiFl-u7i_5IpX-4pdGmL_zxF0fo-XWS_2us-Tv33Ubf_LKC20NN8_nZvVj7Mv688f12Yh_gABbJh4 |
| ContentType | Journal Article |
| Copyright | Copyrightc 2015 Society for the Study of Evolution 2015 The Author(s). Copyright Wiley Subscription Services, Inc. Mar 2015 |
| Copyright_xml | – notice: Copyrightc 2015 Society for the Study of Evolution – notice: 2015 The Author(s). – notice: Copyright Wiley Subscription Services, Inc. Mar 2015 |
| DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
| DOI | 10.1111/evo.12603 |
| DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1558-5646 |
| EndPage | 855 |
| ExternalDocumentID | 3632556881 25600637 EVO12603 24704312 ark_67375_WNG_LZFSTRKT_C |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GrantInformation_xml | – fundername: European Regional Development Fund funderid: CGL2012–34685 – fundername: Australian Research Council funderid: RCF, FG‐G, LWS – fundername: UWA Animal Ethics Committee funderid: 07/100/607 |
| GroupedDBID | --- --Z -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 2AX 31~ 33P 3O- 3SF 4.4 41~ 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANHP AAONW AAPSS AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABBHK ABCQN ABCUV ABDFA ABDPE ABEJV ABEML ABGNP ABIME ABJNI ABLJU ABMNT ABPIB ABPLY ABPPZ ABPTD ABPVW ABSQW ABTLG ABWJO ABXSQ ABXVV ABXZS ABZEO ACAHQ ACBWZ ACCZN ACFBH ACFRR ACGFO ACGFS ACGOD ACHIC ACIPB ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACSCC ACSTJ ACUFI ACUTJ ACVCV ACXBN ACXQS ACYXJ ACZBC ADBBV ADEOM ADGKP ADHSS ADIPN ADIZJ ADKYN ADMGS ADNMO ADOZA ADQBN ADULT ADXAS ADXHL ADZMN AEFGJ AEGXH AEIMD AENEX AEPYG AEUPB AFAZZ AFBPY AFFDN AFFIJ AFGKR AFGWE AFKWF AFNWH AFRAH AFYAG AFZJQ AGMDO AGQPQ AGUYK AGXDD AHGBF AHXOZ AI. AIAGR AIDQK AIDYY AILXY AIURR AJAOE AJBYB AJDVS AJNCP AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD APJGH AQVQM ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F D0L D0S DC7 DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FAC FAL FAS FD6 FEDTE FJD FJW G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HQ2 HTVGU HVGLF HZ~ IAG IAO IEA IEP IOF IPSME ISM ITC IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NHB NQS NU- O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P-O P2P P2W P2X P4D PQ0 PQQKQ Q.N Q11 Q5J QB0 R.K RBO ROL ROX RWL RX1 RXW SA0 SJN SUPJJ TAE TCN TEORI TN5 UB1 UBC UHB UQL V8K VH1 VJK W8V W99 WBKPD WH7 WHG WIH WIK WNSPC WOHZO WQJ WYISQ XG1 XSW YXE YYP YZZ ZCA ZCG ZZTAW ~02 ~IA ~KM ~WT ACSIT AGORE 79B AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF DOOOF ECM EIF ESX JSODD NPM QN7 VQA WRC XOL YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
| ID | FETCH-LOGICAL-i3743-dac7443ca77cfcea7456c32185ddb432686144c146843e1a405e4f3fb0538b8a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351446000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-3820 1558-5646 |
| IngestDate | Thu Oct 02 19:00:57 EDT 2025 Fri Jul 25 10:34:58 EDT 2025 Wed Feb 19 02:42:51 EST 2025 Thu Sep 25 07:36:36 EDT 2025 Thu Jul 03 21:24:16 EDT 2025 Sun Sep 21 06:21:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Histology sperm competition sperm production testosterone production postcopulatory sexual selection |
| Language | English |
| License | 2015 The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i3743-dac7443ca77cfcea7456c32185ddb432686144c146843e1a405e4f3fb0538b8a3 |
| Notes | UWA Animal Ethics Committee - No. 07/100/607 ark:/67375/WNG-LZFSTRKT-C European Regional Development Fund - No. CGL2012-34685 Australian Research Council - No. RCF, FG-G, LWS istex:C3F88469727D48624EEE0DF8DC118B020AA7E54C ArticleID:EVO12603 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9515-9038 |
| OpenAccessLink | https://academic.oup.com/evolut/article-pdf/69/3/848/49980251/evolut0848.pdf |
| PMID | 25600637 |
| PQID | 1665291304 |
| PQPubID | 42232 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1664447456 proquest_journals_1665291304 pubmed_primary_25600637 wiley_primary_10_1111_evo_12603_EVO12603 jstor_primary_24704312 istex_primary_ark_67375_WNG_LZFSTRKT_C |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03 20150301 March 2015 2015-Mar |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: St. Louis |
| PublicationTitle | Evolution |
| PublicationTitleAlternate | Evolution |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Society for the Study of Evolution Oxford University Press |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Society for the Study of Evolution – name: Oxford University Press |
| References | Hosken, D. J., and P. I. Ward. 2001. Experimental evidence for testis size evolution via sperm competition. Ecol. Lett. 4:10-13. Desjardins, C., J. A. Maruniak, and F. H. Bronson. 1973. Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939-941. Firman, R. C. 2014. Female social preference for males that have evolved via monogamy: evidence of a trade-off between pre- and post-copulatory sexually selected traits? Biol. Lett. 10:20140659. Firman, R. C., I. Klemme, and L. W. Simmons. 2013. Strategic adjustments in sperm production within and between two island populations of house mice. Evolution 67:3061-3070. Harvey, S., J. Bozena, and M. Novotny. 1989. Pattern of volatile compounds in dominant and subordinate male mouse urine. J. Chem. Ecol. 15:2061-2072. Simmons, L. W. 2001. Sperm competition and its evolutionary consequences in insects. Princeton Univ. Press, Princeton, NJ. Charlesworth, B., and D. Charlesworth. 1999. The genetic basis of inbreeding depression. Genet. Res. 74:329-340. Beatty, R. A. 1957. A pilot experiment with heterospermic insemination in the rabbit. J. Genet. 55:325. Parker, G. A. 1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45:525-567. Clermont, Y. 1972. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52:198-236. Firman, R. C. 2010. Experimental evolution of sperm quality via postcopulatory sexual selection in house mice. Evolution 64:1245-1256. Peirce, E. J., and W. G. Breed. 2001. A comparative study of sperm production in two species of Australian arid zone rodents (Pseudomys australis, Notomys alexis) with marked differences in testis size. Reproduction 121:239-247. Goldberg, S. R., and W. S. Parker. 1975. Seasonal testicular histology of the colubrid snakes, Masticophis taeniatus and Pituophis melanoleucus. Herpetologica 31:317-322. Lüpold, S., G. M. Linz, J. W. Rivers, D. F. Westneat, and T. R. Birkhead. 2009. Sperm competition selects beyond relative testes size in birds. Evolution 63:391-402. Birkhead, T. R., D. J. Hosken, and S. Pitnick 2009. Sperm biology: an evolutionary perspective. Academic Press, Burlington, MA. Wolff, R. J. 1985. Mating behaviour and female choice: their relation to social status in wild caught house mice Mus musculus housed in a semi-natural environment. J. Zool. 207:43-51. Hurst, J. L. 1990. Urine marking in populations of wild house mice Mus domesticus Rutty. I. Communication between males. Anim. Behav. 40:209-222. Dzminiski, M. A., J. D. Roberts, M. Beveridge, and L. W. Simmons. 2010. Among population covariation between sperm competition and ejaculate expenditure in frogs. Behav. Ecol. 21:322-328. Hollis, B., J. L. Fierst, and D. Houle. 2009. Sexual selection accelerates the elimination of a deleterious mutant in Drosophila melanogaster. Evolution 63:324-333. Martin, P. A., T. J. Reimers, J. R. Lodge, and P. J. Dzuik. 1974. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39:251-258. Poiley, S. M. 1960. A systematic method of breeder rotation for non-inbred laboratory animal colonies. Proc. Anim. Care Panel 10:159-166. Firman, R. C., L. Y. Cheam, and L. W. Simmons. 2011. Sperm competition does not influence sperm hook morphology in selection lines of house mice. J. Evol. Biol. 24:856-862. Whitlock, M. C., and A. F. Agrawal. 2009. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63:569-582. Parker, G. A., and T. Pizzari. 2010. Sperm competition and ejaculate economics. Biol. Rev. 85:897-934. McLearn, K. R., and J. T. Manning. 1985. Mate choice, monogamy and mutational load. J. Theor. Biol. 116:369-376. Schärer, L., P. Ladurner, and R. M. Rieger. 2004. Bigger testes do more work: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behav. Ecol. Sociobiol. 56:420-425. Gage, M. J. G. 1994. Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proc. R. Soc. Lond. B Biol. Sci. 258:247-254. Russell, L. D., H. P. Ren, I. S. Hikim, W. Schulze, and A. P. S. Hikim. 1990. A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am. J. Anat. 188:21-30. Roosen-Runge, E. C. 1977. The process of spermatogenesis in mammals. Cambridge Univ. Press, Cambridge, U.K. Wistuba, J. A., J. Stukenborg, and M. Luetjens. 2007. Mammalian spermatogenesis. Funct. Develop. Embrol. 1:99-117. Dean, M. D., K. G. Ardlie, and M. W. Nachman. 2006. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol. Ecol. 15:4141-4151. Arbuthnott, D., and H. D. Rundle. 2012. Sexual selection is ineffectual or inhibits the purging of deleterious mutations in Drosophila melanogaster. Evolution 66:2127-2137. Brown, C. R., and M. B. Brown. 2003. Testis size increases with colony size in cliff swallows. Behav. Ecol. 14: 569-575. Fuentes, L. B., N. Caravaca, L. E. Pelzer, L. A. Scardapane, R. S. Piezzi, and J. A. Guzman. 1991. Seasonal variations in the testes and epididymis of vizcacha (Lagostomus maximus maximus). Biol. Reprod. 45:493-497. Firman, R. C. 2011. Experimental evolution of sperm competitiveness in a mammal. BMC Evol. Biol. 11:19. Wistuba, J., A. Schrod, B. Grieve, J. K. Hodges, H. Aslam, G. F. Weinbauer, and C. M. Luetjens. 2003. Organization of seminiferous epithelium in primates: relationship to spermatogenic efficiency, phylogeny, and mating system. Biol. Reprod. 69:582-591. Boschetto, C., C. Gasparini, and A. Pilastro. 2011. Sperm number and velocity affect sperm competition success in the guppy (Poecilia reticulata). Behav. Ecol. Sociobiol. 65:813-821. Pitnick, S., G. T. Miller, J. Reagan, and B. Holland. 2001. Males' evolutionary response to experimental removal of sexual selection. Proc. R. Soc. Lond. B Biol. Sci. 268:1071-1080. Hochereau-de Reviers, M. H., and G. A. Lincoln. 1978. Seasonal variation in the histology of the testis of the red deer, Cervus elaphus. J. Reprod. Fertil. 54:209-213. Mayhew, W. W., and S. J. Wright. 1970. Seasonal changes in testicular histology of three species of the lizard genus Uma. J. Morph. 130:163-185. Shabalina, S. A., L. Y. Yampolsky, and A. S. Kondrashov. 1997. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl. Acad. Sci. USA 94:13034-13039. Ramm, S. A. 2010. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol. Lett. 6:219-221. Gage, M. J. G., and E. H. Morrow. 2003. Experimental evidence of the evolution of numerous, tiny sperm via sperm competition. Curr. Biol. 13:754-757. Hosken, D. J. 1997. Sperm competition in bats. Proc. R. Soc. Lond. B Biol. Sci. 264:385-392. Ribble, D. O., and J. S. Millar. 1992. Intraspecific variation in testes size among northern populations of Peromyscus. Funct. Ecol. 6:455-459. Simmons, L. W., and F. Garcia-Gonzalez. 2008. Evolutionary reduction in testes size and competitive fertilisation success in response to the experimental removal of sexual selection in dung beetles. Evolution 62:2580-2591. Radwan, J. 2004. Effectiveness of sexual selection in removing mutations induced with ionization. Ecol. Let. 7:1149-1154. Montoto, L. G., M. Concepción, M. Tourmente, J. Martin-Coello, C. Crespo, J. J. Luque-Larena, M. Gomendio, and E. R. S. Roldan. 2011. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS One 6:e18173. Pitcher, T. E., P. O. Dunn, and L. A. Whittingham. 2005. Sperm competition and the evolution of testis size in birds. J. Evol. Biol. 18:557-567. Byrne, P. G., J. D. Roberts, and L. W. Simmons. 2002. Sperm competition selects for increased testes mass in Australian frogs. J. Evol. Biol. 15:347-355. Firman, R. C., and L. W. Simmons. 2008. The frequency of multiple paternity predicts variation in testes size among island populations of house mice. J. Evol. Biol. 21:1524-1533. Penn, D. J., and W. K. Potts. 1998. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13:391-396. Harcourt, A. H., P. H. Harvey, S. G. Larson, and R. V. Short. 1981. Testis weight, body weight and breeding system in the primates. Nature 293:55-57. delBarco-Trillo, J., and M. H. Ferkin. 2004. Male mammals respond to a risk of sperm competition conveyed by odours of conspecific males. Nature 431:446-449. Almbro, M., and L. W. Simmons. 2014. Sexual selection can remove an experimentally induced mutation load. Evolution 68:295-300. Ramm, S. A., and P. Stockley. 2009. Adaptive plasticity of mammalian sperm production in response to social experience. Proc. R. Soc. Lond. B Biol. Sci. 276:745-751. Ramm, S. A., and L. Schärer. 2014. The evolutionary ecology of testicular function: size isn't everything. Biol. Rev. 89:874-888. Becker, W. A. 1984. Manual of quantitative genetics, 4th ed. Academic Enterprises, Pullman, WA. Rowe, M., and S. Pruett-Jones. 2011. Sperm competition selects for sperm quantity and quality in the Australian Maluridae. PLoS One 6:e15720. Vrech D. E., P. A. Olivero, C. I. Mattoni, and A. V. Peretti. 2014. Testes mass, but not sperm length, increases with higher levels of polyandry in an ancient sex model. PLoS One 9:e94135. Montoto, L. G., L. Arregui, N. M. Sanchez, M. Gomendio, and E. R. S. Roldan. 2012. Postnatal testicular development in mouse species with different levels of sperm competition. Reproduction 143:333-346. Long, T. A. F., and R. Montgomerie. 2005. Ejaculate investment in a promiscuous rodent, Peromyscus maniculatus: effects of population density and social role. Evol. Ecol. Res. 8:345-356. 1957; 55 2002; 15 1994; 258 1973; 182 2013; 67 2004; 7 2003; 13 2003; 14 2009; 276 2011; 11 2014; 68 1970 1985; 207 1990; 188 2001; 268 1977 1990; 40 1992; 6 2010; 21 2010; 64 1997; 94 1991; 45 2001 1997; 264 1984 2011; 65 2008; 21 2011; 24 1972; 52 2014; 9 2008; 62 2007; 1 2012; 66 2010; 6 2014; 10 1998; 13 2001; 121 2009; 63 2012; 143 1960; 10 1978; 54 2006; 15 2009 1998 1996 2006 1975; 31 2011; 6 2010; 85 2014; 89 1974; 39 2004; 431 1970; 130 1981; 293 2001; 4 2005; 8 2004; 56 1970; 45 2003; 69 1985; 116 1999; 74 2013 1989; 15 2005; 18 |
| References_xml | – reference: Ramm, S. A. 2010. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol. Lett. 6:219-221. – reference: Roosen-Runge, E. C. 1977. The process of spermatogenesis in mammals. Cambridge Univ. Press, Cambridge, U.K. – reference: Shabalina, S. A., L. Y. Yampolsky, and A. S. Kondrashov. 1997. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl. Acad. Sci. USA 94:13034-13039. – reference: Gage, M. J. G. 1994. Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proc. R. Soc. Lond. B Biol. Sci. 258:247-254. – reference: Radwan, J. 2004. Effectiveness of sexual selection in removing mutations induced with ionization. Ecol. Let. 7:1149-1154. – reference: Firman, R. C., L. Y. Cheam, and L. W. Simmons. 2011. Sperm competition does not influence sperm hook morphology in selection lines of house mice. J. Evol. Biol. 24:856-862. – reference: Ramm, S. A., and L. Schärer. 2014. The evolutionary ecology of testicular function: size isn't everything. Biol. Rev. 89:874-888. – reference: Lüpold, S., G. M. Linz, J. W. Rivers, D. F. Westneat, and T. R. Birkhead. 2009. Sperm competition selects beyond relative testes size in birds. Evolution 63:391-402. – reference: Hollis, B., J. L. Fierst, and D. Houle. 2009. Sexual selection accelerates the elimination of a deleterious mutant in Drosophila melanogaster. Evolution 63:324-333. – reference: Long, T. A. F., and R. Montgomerie. 2005. Ejaculate investment in a promiscuous rodent, Peromyscus maniculatus: effects of population density and social role. Evol. Ecol. Res. 8:345-356. – reference: McLearn, K. R., and J. T. Manning. 1985. Mate choice, monogamy and mutational load. J. Theor. Biol. 116:369-376. – reference: Parker, G. A. 1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45:525-567. – reference: Boschetto, C., C. Gasparini, and A. Pilastro. 2011. Sperm number and velocity affect sperm competition success in the guppy (Poecilia reticulata). Behav. Ecol. Sociobiol. 65:813-821. – reference: Hosken, D. J. 1997. Sperm competition in bats. Proc. R. Soc. Lond. B Biol. Sci. 264:385-392. – reference: Vrech D. E., P. A. Olivero, C. I. Mattoni, and A. V. Peretti. 2014. Testes mass, but not sperm length, increases with higher levels of polyandry in an ancient sex model. PLoS One 9:e94135. – reference: Poiley, S. M. 1960. A systematic method of breeder rotation for non-inbred laboratory animal colonies. Proc. Anim. Care Panel 10:159-166. – reference: Russell, L. D., H. P. Ren, I. S. Hikim, W. Schulze, and A. P. S. Hikim. 1990. A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am. J. Anat. 188:21-30. – reference: Schärer, L., P. Ladurner, and R. M. Rieger. 2004. Bigger testes do more work: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behav. Ecol. Sociobiol. 56:420-425. – reference: Hosken, D. J., and P. I. Ward. 2001. Experimental evidence for testis size evolution via sperm competition. Ecol. Lett. 4:10-13. – reference: Hurst, J. L. 1990. Urine marking in populations of wild house mice Mus domesticus Rutty. I. Communication between males. Anim. Behav. 40:209-222. – reference: Rowe, M., and S. Pruett-Jones. 2011. Sperm competition selects for sperm quantity and quality in the Australian Maluridae. PLoS One 6:e15720. – reference: Almbro, M., and L. W. Simmons. 2014. Sexual selection can remove an experimentally induced mutation load. Evolution 68:295-300. – reference: Mayhew, W. W., and S. J. Wright. 1970. Seasonal changes in testicular histology of three species of the lizard genus Uma. J. Morph. 130:163-185. – reference: Wistuba, J. A., J. Stukenborg, and M. Luetjens. 2007. Mammalian spermatogenesis. Funct. Develop. Embrol. 1:99-117. – reference: Dean, M. D., K. G. Ardlie, and M. W. Nachman. 2006. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol. Ecol. 15:4141-4151. – reference: Whitlock, M. C., and A. F. Agrawal. 2009. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63:569-582. – reference: Parker, G. A., and T. Pizzari. 2010. Sperm competition and ejaculate economics. Biol. Rev. 85:897-934. – reference: Pitnick, S., G. T. Miller, J. Reagan, and B. Holland. 2001. Males' evolutionary response to experimental removal of sexual selection. Proc. R. Soc. Lond. B Biol. Sci. 268:1071-1080. – reference: Firman, R. C. 2014. Female social preference for males that have evolved via monogamy: evidence of a trade-off between pre- and post-copulatory sexually selected traits? Biol. Lett. 10:20140659. – reference: Harcourt, A. H., P. H. Harvey, S. G. Larson, and R. V. Short. 1981. Testis weight, body weight and breeding system in the primates. Nature 293:55-57. – reference: Wolff, R. J. 1985. Mating behaviour and female choice: their relation to social status in wild caught house mice Mus musculus housed in a semi-natural environment. J. Zool. 207:43-51. – reference: delBarco-Trillo, J., and M. H. Ferkin. 2004. Male mammals respond to a risk of sperm competition conveyed by odours of conspecific males. Nature 431:446-449. – reference: Birkhead, T. R., D. J. Hosken, and S. Pitnick 2009. Sperm biology: an evolutionary perspective. Academic Press, Burlington, MA. – reference: Martin, P. A., T. J. Reimers, J. R. Lodge, and P. J. Dzuik. 1974. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39:251-258. – reference: Becker, W. A. 1984. Manual of quantitative genetics, 4th ed. Academic Enterprises, Pullman, WA. – reference: Firman, R. C. 2010. Experimental evolution of sperm quality via postcopulatory sexual selection in house mice. Evolution 64:1245-1256. – reference: Charlesworth, B., and D. Charlesworth. 1999. The genetic basis of inbreeding depression. Genet. Res. 74:329-340. – reference: Beatty, R. A. 1957. A pilot experiment with heterospermic insemination in the rabbit. J. Genet. 55:325. – reference: Byrne, P. G., J. D. Roberts, and L. W. Simmons. 2002. Sperm competition selects for increased testes mass in Australian frogs. J. Evol. Biol. 15:347-355. – reference: Brown, C. R., and M. B. Brown. 2003. Testis size increases with colony size in cliff swallows. Behav. Ecol. 14: 569-575. – reference: Firman, R. C. 2011. Experimental evolution of sperm competitiveness in a mammal. BMC Evol. Biol. 11:19. – reference: Fuentes, L. B., N. Caravaca, L. E. Pelzer, L. A. Scardapane, R. S. Piezzi, and J. A. Guzman. 1991. Seasonal variations in the testes and epididymis of vizcacha (Lagostomus maximus maximus). Biol. Reprod. 45:493-497. – reference: Montoto, L. G., M. Concepción, M. Tourmente, J. Martin-Coello, C. Crespo, J. J. Luque-Larena, M. Gomendio, and E. R. S. Roldan. 2011. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS One 6:e18173. – reference: Arbuthnott, D., and H. D. Rundle. 2012. Sexual selection is ineffectual or inhibits the purging of deleterious mutations in Drosophila melanogaster. Evolution 66:2127-2137. – reference: Dzminiski, M. A., J. D. Roberts, M. Beveridge, and L. W. Simmons. 2010. Among population covariation between sperm competition and ejaculate expenditure in frogs. Behav. Ecol. 21:322-328. – reference: Pitcher, T. E., P. O. Dunn, and L. A. Whittingham. 2005. Sperm competition and the evolution of testis size in birds. J. Evol. Biol. 18:557-567. – reference: Goldberg, S. R., and W. S. Parker. 1975. Seasonal testicular histology of the colubrid snakes, Masticophis taeniatus and Pituophis melanoleucus. Herpetologica 31:317-322. – reference: Ribble, D. O., and J. S. Millar. 1992. Intraspecific variation in testes size among northern populations of Peromyscus. Funct. Ecol. 6:455-459. – reference: Desjardins, C., J. A. Maruniak, and F. H. Bronson. 1973. Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939-941. – reference: Firman, R. C., I. Klemme, and L. W. Simmons. 2013. Strategic adjustments in sperm production within and between two island populations of house mice. Evolution 67:3061-3070. – reference: Harvey, S., J. Bozena, and M. Novotny. 1989. Pattern of volatile compounds in dominant and subordinate male mouse urine. J. Chem. Ecol. 15:2061-2072. – reference: Wistuba, J., A. Schrod, B. Grieve, J. K. Hodges, H. Aslam, G. F. Weinbauer, and C. M. Luetjens. 2003. Organization of seminiferous epithelium in primates: relationship to spermatogenic efficiency, phylogeny, and mating system. Biol. Reprod. 69:582-591. – reference: Hochereau-de Reviers, M. H., and G. A. Lincoln. 1978. Seasonal variation in the histology of the testis of the red deer, Cervus elaphus. J. Reprod. Fertil. 54:209-213. – reference: Ramm, S. A., and P. Stockley. 2009. Adaptive plasticity of mammalian sperm production in response to social experience. Proc. R. Soc. Lond. B Biol. Sci. 276:745-751. – reference: Clermont, Y. 1972. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52:198-236. – reference: Firman, R. C., and L. W. Simmons. 2008. The frequency of multiple paternity predicts variation in testes size among island populations of house mice. J. Evol. Biol. 21:1524-1533. – reference: Simmons, L. W., and F. Garcia-Gonzalez. 2008. Evolutionary reduction in testes size and competitive fertilisation success in response to the experimental removal of sexual selection in dung beetles. Evolution 62:2580-2591. – reference: Peirce, E. J., and W. G. Breed. 2001. A comparative study of sperm production in two species of Australian arid zone rodents (Pseudomys australis, Notomys alexis) with marked differences in testis size. Reproduction 121:239-247. – reference: Simmons, L. W. 2001. Sperm competition and its evolutionary consequences in insects. Princeton Univ. Press, Princeton, NJ. – reference: Penn, D. J., and W. K. Potts. 1998. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13:391-396. – reference: Montoto, L. G., L. Arregui, N. M. Sanchez, M. Gomendio, and E. R. S. Roldan. 2012. Postnatal testicular development in mouse species with different levels of sperm competition. Reproduction 143:333-346. – reference: Gage, M. J. G., and E. H. Morrow. 2003. Experimental evidence of the evolution of numerous, tiny sperm via sperm competition. Curr. Biol. 13:754-757. – year: 2009 – volume: 63 start-page: 569 year: 2009 end-page: 582 article-title: Purging the genome with sexual selection: reducing mutation load through selection on males publication-title: Evolution – volume: 15 start-page: 2061 year: 1989 end-page: 2072 article-title: Pattern of volatile compounds in dominant and subordinate male mouse urine publication-title: J. Chem. Ecol. – volume: 4 start-page: 10 year: 2001 end-page: 13 article-title: Experimental evidence for testis size evolution via sperm competition publication-title: Ecol. Lett. – year: 2001 – volume: 85 start-page: 897 year: 2010 end-page: 934 article-title: Sperm competition and ejaculate economics publication-title: Biol. Rev. – volume: 65 start-page: 813 year: 2011 end-page: 821 article-title: Sperm number and velocity affect sperm competition success in the guppy ( ) publication-title: Behav. Ecol. Sociobiol. – volume: 13 start-page: 391 year: 1998 end-page: 396 article-title: Chemical signals and parasite‐mediated sexual selection publication-title: Trends Ecol. Evol. – volume: 258 start-page: 247 year: 1994 end-page: 254 article-title: Associations between body size, mating pattern, testis size and sperm lengths across butterflies publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 182 start-page: 939 year: 1973 end-page: 941 article-title: Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns publication-title: Science – start-page: 333 year: 1996 end-page: 350 – volume: 15 start-page: 347 year: 2002 end-page: 355 article-title: Sperm competition selects for increased testes mass in Australian frogs publication-title: J. Evol. Biol. – volume: 21 start-page: 322 year: 2010 end-page: 328 article-title: Among population covariation between sperm competition and ejaculate expenditure in frogs publication-title: Behav. Ecol. – volume: 24 start-page: 856 year: 2011 end-page: 862 article-title: Sperm competition does not influence sperm hook morphology in selection lines of house mice publication-title: J. Evol. Biol. – volume: 1 start-page: 99 year: 2007 end-page: 117 article-title: Mammalian spermatogenesis publication-title: Funct. Develop. Embrol. – volume: 207 start-page: 43 year: 1985 end-page: 51 article-title: Mating behaviour and female choice: their relation to social status in wild caught house mice housed in a semi‐natural environment publication-title: J. Zool. – volume: 39 start-page: 251 year: 1974 end-page: 258 article-title: The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring publication-title: J. Reprod. Fertil. – volume: 63 start-page: 324 year: 2009 end-page: 333 article-title: Sexual selection accelerates the elimination of a deleterious mutant in publication-title: Evolution – volume: 9 start-page: e94135 year: 2014 article-title: Testes mass, but not sperm length, increases with higher levels of polyandry in an ancient sex model publication-title: PLoS One – volume: 54 start-page: 209 year: 1978 end-page: 213 article-title: Seasonal variation in the histology of the testis of the red deer, publication-title: J. Reprod. Fertil. – volume: 6 start-page: e18173 year: 2011 article-title: Sperm competition, sperm numbers and sperm quality in muroid rodents publication-title: PLoS One – volume: 63 start-page: 391 year: 2009 end-page: 402 article-title: Sperm competition selects beyond relative testes size in birds publication-title: Evolution – start-page: 1 year: 1970 end-page: 45 – volume: 264 start-page: 385 year: 1997 end-page: 392 article-title: Sperm competition in bats publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 268 start-page: 1071 year: 2001 end-page: 1080 article-title: Males’ evolutionary response to experimental removal of sexual selection publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 94 start-page: 13034 year: 1997 end-page: 13039 article-title: Rapid decline of fitness in panmictic populations of maintained under relaxed natural selection publication-title: Proc. Natl. Acad. Sci. USA – start-page: 667 year: 1998 end-page: 755 – volume: 74 start-page: 329 year: 1999 end-page: 340 article-title: The genetic basis of inbreeding depression publication-title: Genet. Res. – volume: 293 start-page: 55 year: 1981 end-page: 57 article-title: Testis weight, body weight and breeding system in the primates publication-title: Nature – volume: 276 start-page: 745 year: 2009 end-page: 751 article-title: Adaptive plasticity of mammalian sperm production in response to social experience publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 52 start-page: 198 year: 1972 end-page: 236 article-title: Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal publication-title: Physiol. Rev. – volume: 6 start-page: 455 year: 1992 end-page: 459 article-title: Intraspecific variation in testes size among northern populations of publication-title: Funct. Ecol. – volume: 7 start-page: 1149 year: 2004 end-page: 1154 article-title: Effectiveness of sexual selection in removing mutations induced with ionization publication-title: Ecol. Let. – volume: 10 start-page: 159 year: 1960 end-page: 166 article-title: A systematic method of breeder rotation for non‐inbred laboratory animal colonies. Proc. Anim publication-title: Care Panel – volume: 143 start-page: 333 year: 2012 end-page: 346 article-title: Postnatal testicular development in mouse species with different levels of sperm competition publication-title: Reproduction – volume: 6 start-page: 219 year: 2010 end-page: 221 article-title: Sperm competition and sperm length influence the rate of mammalian spermatogenesis publication-title: Biol. Lett. – volume: 55 start-page: 325 year: 1957 article-title: A pilot experiment with heterospermic insemination in the rabbit publication-title: J. Genet. – volume: 121 start-page: 239 year: 2001 end-page: 247 article-title: A comparative study of sperm production in two species of Australian arid zone rodents ( , ) with marked differences in testis size publication-title: Reproduction – volume: 67 start-page: 3061 year: 2013 end-page: 3070 article-title: Strategic adjustments in sperm production within and between two island populations of house mice publication-title: Evolution – volume: 431 start-page: 446 year: 2004 end-page: 449 article-title: Male mammals respond to a risk of sperm competition conveyed by odours of conspecific males publication-title: Nature – volume: 18 start-page: 557 year: 2005 end-page: 567 article-title: Sperm competition and the evolution of testis size in birds publication-title: J. Evol. Biol. – volume: 6 start-page: e15720 year: 2011 article-title: Sperm competition selects for sperm quantity and quality in the Australian Maluridae publication-title: PLoS One – year: 1977 – volume: 31 start-page: 317 year: 1975 end-page: 322 article-title: Seasonal testicular histology of the colubrid snakes, and publication-title: Herpetologica – volume: 69 start-page: 582 year: 2003 end-page: 591 article-title: Organization of seminiferous epithelium in primates: relationship to spermatogenic efficiency, phylogeny, and mating system publication-title: Biol. Reprod. – volume: 21 start-page: 1524 year: 2008 end-page: 1533 article-title: The frequency of multiple paternity predicts variation in testes size among island populations of house mice publication-title: J. Evol. Biol. – volume: 89 start-page: 874 year: 2014 end-page: 888 article-title: The evolutionary ecology of testicular function: size isn't everything publication-title: Biol. Rev. – volume: 11 start-page: 19 year: 2011 article-title: Experimental evolution of sperm competitiveness in a mammal publication-title: BMC Evol. Biol. – volume: 40 start-page: 209 year: 1990 end-page: 222 article-title: Urine marking in populations of wild house mice Rutty. I. Communication between males publication-title: Anim. Behav. – volume: 130 start-page: 163 year: 1970 end-page: 185 article-title: Seasonal changes in testicular histology of three species of the lizard genus publication-title: J. Morph. – start-page: 977 year: 2006 end-page: 1016 – year: 1984 – volume: 13 start-page: 754 year: 2003 end-page: 757 article-title: Experimental evidence of the evolution of numerous, tiny sperm via sperm competition publication-title: Curr. Biol. – volume: 45 start-page: 493 year: 1991 end-page: 497 article-title: Seasonal variations in the testes and epididymis of vizcacha ( ) publication-title: Biol. Reprod. – volume: 56 start-page: 420 year: 2004 end-page: 425 article-title: Bigger testes do more work: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free‐living flatworm sp publication-title: Behav. Ecol. Sociobiol. – volume: 10 start-page: 20140659 year: 2014 article-title: Female social preference for males that have evolved via monogamy: evidence of a trade‐off between pre‐ and post‐copulatory sexually selected traits publication-title: Biol. Lett. – volume: 116 start-page: 369 year: 1985 end-page: 376 article-title: Mate choice, monogamy and mutational load publication-title: J. Theor. Biol. – volume: 14 start-page: 569 year: 2003 end-page: 575 article-title: Testis size increases with colony size in cliff swallows publication-title: Behav. Ecol. – volume: 15 start-page: 4141 year: 2006 end-page: 4151 article-title: The frequency of multiple paternity suggests that sperm competition is common in house mice ( ) publication-title: Mol. Ecol. – volume: 68 start-page: 295 year: 2014 end-page: 300 article-title: Sexual selection can remove an experimentally induced mutation load publication-title: Evolution – volume: 66 start-page: 2127 year: 2012 end-page: 2137 article-title: Sexual selection is ineffectual or inhibits the purging of deleterious mutations in publication-title: Evolution – volume: 64 start-page: 1245 year: 2010 end-page: 1256 article-title: Experimental evolution of sperm quality via postcopulatory sexual selection in house mice publication-title: Evolution – volume: 8 start-page: 345 year: 2005 end-page: 356 article-title: Ejaculate investment in a promiscuous rodent, : effects of population density and social role publication-title: Evol. Ecol. Res. – volume: 188 start-page: 21 year: 1990 end-page: 30 article-title: A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell publication-title: Am. J. Anat. – volume: 62 start-page: 2580 year: 2008 end-page: 2591 article-title: Evolutionary reduction in testes size and competitive fertilisation success in response to the experimental removal of sexual selection in dung beetles publication-title: Evolution – volume: 45 start-page: 525 year: 1970 end-page: 567 article-title: Sperm competition and its evolutionary consequences in the insects publication-title: Biol. Rev. – year: 2013 |
| SSID | ssj0009519 |
| Score | 2.3176308 |
| Snippet | Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase... |
| SourceID | proquest pubmed wiley jstor istex |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 848 |
| SubjectTerms | Animal behavior Animal populations Animal reproduction Animals Biological Evolution BRIEF COMMUNICATIONS Competition Evolution Evolutionary biology Histology Male Male animals Mating behavior Mice Organ Size Population size postcopulatory sexual selection Rodents Seminiferous tubules Seminiferous Tubules - anatomy & histology Sexual Behavior, Animal Sexual selection Sperm competition Sperm Count sperm production Spermatozoa Testes Testis - anatomy & histology testosterone production Tissues |
| Title | Evolutionary change in testes tissue composition among experimental populations of house mice |
| URI | https://api.istex.fr/ark:/67375/WNG-LZFSTRKT-C/fulltext.pdf https://www.jstor.org/stable/24704312 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fevo.12603 https://www.ncbi.nlm.nih.gov/pubmed/25600637 https://www.proquest.com/docview/1665291304 https://www.proquest.com/docview/1664447456 |
| Volume | 69 |
| WOSCitedRecordID | wos000351446000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1558-5646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009519 issn: 0014-3820 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90Kvji90f9IoKIL5W1SZuKT6KbgmOKTh2ChLRNUIRO1jn0v_eSdnWCD4JvhaShze8u97vkcgewxzylaBoyF5dF7TKN7o6UfuzGsi55Suta2TwF9y3ebkfd7tH1BByP7sIU-SGqDTejGXa9Ngou43xMydWwd-ghG6eTMOWj3AY1mDq7ad61xnLuegX79ZhL0dKViYVMIE_1MnJSM50fo3DE34jmT95qDU9z_l-fvABzJd8kJ4WALMKEypZgpqhA-bkMT41hKXs4KiluAZOXjAzMNmhOBhYWYuLOy-AuYqsTkfHCAOStKgKWk54mz733XBFT5n4F7pqNzumFW1ZccF-oyVWayoQzRhPJeaITJTnSq4QiCwjSNGbI9CLjPybmuhajypPI9hTTVMeoylEcSboKtayXqXUgMgzjoE51kDI0lFEofc2VZOid4Mh-PXFg3068eCuyagjZfzVBZjwQD-1z0Xps3nZuLjvi1IFVi0zV0WfcZATyHdgaQSVKxcuFF4aBf4SGmTmwWzWjyphzEJkpnAHThzFm_s2BtQLi78ENAwwpd-DAIlk1jJwlxFBYDEXj_so-bPy96ybMIuEKihi2LagN-u9qG6aTIcLZ34FJ3o12Sin-Amh885U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5qq9QXrdofsVVXEPElcslOsin4Iu2dLY2n1GstgiybZJeWQq7cXQ_9753Z5OIJPgi-BXazJPvN7HyzOzsD8Aoja2WVYkjLogvRkbtjTFyEhekZVcmesz5PwXmuhsPs4mL_8wq8W9yFafJDdBturBl-vWYF5w3pJS238_HbiOi4vANrSGJE8r12eDo4y5eS7kYN_Y0wlGTq2sxCHMnTvUyklOfzxyIe8W9M80_i6i3P4OH_ffMGPGgZp3jfiMgjWLH1Y7jX1KD8-QS-9-et9NGworkHLK5qMeON0KmYeWAER5634V3C1ycSy6UBxE1XBmwqxk5cjm-nVnCh-004G_RHB0dhW3MhvJKcrbQypUKUpVGqdKU1ighWKYkHJFVVIHG9jD3Iki9sobSRIb5n0UlXkDJnRWbkFqzW49rugDBpWiQ96ZIKyVRmqYmdsgbJP6GR414ZwGs_8_qmyauhzeSaw8xUor8OP-j82-DL6PRkpA8C2PLQdB1jVJwTKA5gb4GVblVvqqM0TeJ9Ms0YwMuumZSGT0JMbWkGuA8i8r8FsN1g_Htw5oCpVAG88VB2DQt3iTDUHkPdP__kH57-e9cXsH40-pjr_Hh4sgv3iX4lTUTbHqzOJrf2Gdwt5wTt5HkrzL8AQH32nQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7qVUtf_NnaaNUVRHxJuWQn2RR8kfai0uMs9VqLIMsm2aVFyB1310P_e2c2uXiCD4Jvgd0syX47mW82s98AvMLIWlmlGNJn0YXoKNwxJi7CwvSNqmTfWa9TcDFUo1F2eXl4ugFvV2dhGn2IbsONLcN_r9nA7bRya1Zul5ODiOi4vAWbyEVkerB5fJafD9dEd6OG_kYYSnJ1rbIQZ_J0NxMp5fn8scpH_BvT_JO4es-T3_u_Z74Pd1vGKd41S-QBbNj6IdxpalD-fATfBst29dGwojkHLK5rseCN0LlYeGAEZ5636V3C1ycS66UBxLQrAzYXEyeuJjdzK7jQ_Q6c54Px0YewrbkQXktWK61MqRBlaZQqXWmNIoJVSuIBSVUVSFwv4wiy5ANbKG1kiO9ZdNIVZMxZkRm5C716Uts9ECZNi6QvXVIhucosNbFT1iDFJzRy3C8DeO1nXk8bXQ1tZt85zUwl-svovR5-zT-Pz07G-iiAXQ9N1zFGxZpAcQD7K6x0a3pzHaVpEh-Sa8YAXnbNZDT8J8TUlmaA-yAiv1sAjxuMfw_OHDCVKoA3HsquYRUuEYbaY6gHF5_8xZN_7_oCtk6Pcz38ODp5CtvEvpImoW0feovZjX0Gt8slITt73q7lX9nd9hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+change+in+testes+tissue+composition+among+experimental+populations+of+house+mice&rft.jtitle=Evolution&rft.au=Firman%2C+Ren%C3%A9e+C.&rft.au=Garcia-Gonzalez%2C+Francisco&rft.au=Thyer%2C+Evan&rft.au=Wheeler%2C+Samantha&rft.date=2015-03-01&rft.pub=Society+for+the+Study+of+Evolution&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=69&rft.issue=3&rft.spage=848&rft.epage=855&rft_id=info:doi/10.1111%2Fevo.12603&rft.externalDocID=24704312 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon |