Deep Dag Learning of Effective Brain Connectivity for FMRI Analysis

Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly construc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Symposium on Biomedical Imaging) Ročník 2023; s. 1 - 5
Hlavní autoři: Yu, Yue, Kan, Xuan, Cui, Hejie, Xu, Ran, Zheng, Yujia, Song, Xiangchen, Zhu, Yanqiao, Zhang, Kun, Nabi, Razieh, Guo, Ying, Zhang, Chao, Yang, Carl
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.04.2023
Témata:
ISSN:1945-7928, 1945-8452
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly constructed based on similarities among region of interests (ROIs), which are noisy and can lead to inferior results for GNN models. To better adapt GNNs for fMRI analysis, we propose DABNet, a Deep DAG learning framework based on Brain Networks for fMRI analysis. DABNet adopts a brain network generator module, which harnesses the DAG learning approach to transform the raw time-series into effective brain connectivities. Experiments on two fMRI datasets demonstrate the efficacy of DABNet. The generated brain networks also highlight the prediction-related brain regions and thus provide interpretations for predictions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1945-7928
1945-8452
DOI:10.1109/ISBI53787.2023.10230429