An Approximate Algorithm for Min-Based Possibilistic Networks

Min‐based (or qualitative) possibilistic networks are important tools to efficiently and compactly represent and analyze uncertain information. Inference is a crucial task in min‐based networks, which consists of propagating information through the network structure to answer queries. Exact inferenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems Jg. 29; H. 7; S. 615 - 633
Hauptverfasser: Ajroud, Amen, Benferhat, Salem
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, NJ Blackwell Publishing Ltd 01.07.2014
Wiley
John Wiley & Sons, Inc
Schlagworte:
ISSN:0884-8173, 1098-111X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Min‐based (or qualitative) possibilistic networks are important tools to efficiently and compactly represent and analyze uncertain information. Inference is a crucial task in min‐based networks, which consists of propagating information through the network structure to answer queries. Exact inference computes posteriori possibility distributions, given some observed evidence, in a time proportional to the number of nodes of the network when it is simply connected (without loops). On multiply connected networks (with loops), exact inference is known as a hard problem. This paper proposes an approximate algorithm for inference in min‐based possibilistic networks. More precisely, we adapt the well‐known approximate algorithm Loopy Belief Propagation (LBP) on qualitative possibilistic networks. We provide different experimental results that analyze the convergence of possibilistic LBP.
AbstractList Min-based (or qualitative) possibilistic networks are important tools to efficiently and compactly represent and analyze uncertain information. Inference is a crucial task in min-based networks, which consists of propagating information through the network structure to answer queries. Exact inference computes posteriori possibility distributions, given some observed evidence, in a time proportional to the number of nodes of the network when it is simply connected (without loops). On multiply connected networks (with loops), exact inference is known as a hard problem. This paper proposes an approximate algorithm for inference in min-based possibilistic networks. More precisely, we adapt the well-known approximate algorithm Loopy Belief Propagation (LBP) on qualitative possibilistic networks. We provide different experimental results that analyze the convergence of possibilistic LBP.
Min-based (or qualitative) possibilistic networks are important tools to efficiently and compactly represent and analyze uncertain information. Inference is a crucial task in min-based networks, which consists of propagating information through the network structure to answer queries. Exact inference computes posteriori possibility distributions, given some observed evidence, in a time proportional to the number of nodes of the network when it is simply connected (without loops). On multiply connected networks (with loops), exact inference is known as a hard problem. This paper proposes an approximate algorithm for inference in min-based possibilistic networks. More precisely, we adapt the well-known approximate algorithm Loopy Belief Propagation (LBP) on qualitative possibilistic networks. We provide different experimental results that analyze the convergence of possibilistic LBP. [PUBLICATION ABSTRACT]
Author Ajroud, Amen
Benferhat, Salem
Author_xml – sequence: 1
  givenname: Amen
  surname: Ajroud
  fullname: Ajroud, Amen
  email: amen.ajroud@isetso.rnu.tn
  organization: PRINCE - ISITCOM, Université de Sousse, Hammam Sousse, Tunisia
– sequence: 2
  givenname: Salem
  surname: Benferhat
  fullname: Benferhat, Salem
  organization: CRIL - CNRS UMR 8188, Université d'Artois, Lens, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28594283$$DView record in Pascal Francis
BookMark eNqFkUlPxDAMhSMEEsNy4B9UQkhcCnaTNM2Bw7CvA0hstyhtEwh02iHpCPj3BAZx4MLJlvw9y35vicy3XWsIWUPYQoBs27X9VoY5k3NkgCCLFBEf5skAioKlBQq6SJZCeAZAFIwPyM6wTYaTie_e3Vj3Jhk2j513_dM4sZ1PLlyb7upg6uSqC8GVrnGhd1UyMv1b51_CClmwuglm9acuk9vDg5u94_T88uhkb3ieOsqFTJngVFghqbRljZpbi1mOJVAqRJUzI2tmjWVgaSWBQw11yUoNIJkRtigZXSabs73x0NepCb0au1CZptGt6aZBYS6Q5zRn2f8oZ8iyjCFEdP0P-txNfRsfiRQWnDLJaaQ2figdKt1Yr9vKBTXx0TD_obKCS5YVX9z2jHtzjfn4nSOor2BUDEZ9B6NORjffTVSkM0U01bz_KrR_Ubmggqv70ZG6uIbTu_38TN3TT0XfkN8
CODEN IJISED
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright © 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Wiley Periodicals, Inc.
DBID BSCLL
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.21649
DatabaseName Istex
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1098-111X
EndPage 633
ExternalDocumentID 3283037791
28594283
INT21649
ark_67375_WNG_MQ0JVD6K_W
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFFHD
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAHHS
AAJEY
AAYOK
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RHX
RWI
WRC
WWI
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i3579-47537f7939fbd1a5ff1261b03377c64e9d4fef40f3c9050d0db4ba0094e7f8b43
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337507300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-8173
IngestDate Sun Nov 09 12:25:38 EST 2025
Wed Oct 01 14:20:25 EDT 2025
Sat Aug 16 22:42:40 EDT 2025
Wed Apr 02 07:37:51 EDT 2025
Wed Jan 22 16:36:59 EST 2025
Tue Nov 11 03:31:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Belief
Network structure
Experimental result
Possibility theory
Probabilistic approach
Query
Information network
Imperfect information
Probabilistic net
Inference
Graph method
Information structure
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3579-47537f7939fbd1a5ff1261b03377c64e9d4fef40f3c9050d0db4ba0094e7f8b43
Notes ark:/67375/WNG-MQ0JVD6K-W
istex:C3D2F407D1E3C3923AD75E9CBB85CF2B30E60F38
ArticleID:INT21649
benferhat@cril.fr
e‐mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1518534953
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1671563642
proquest_miscellaneous_1541422410
proquest_journals_1518534953
pascalfrancis_primary_28594283
wiley_primary_10_1002_int_21649_INT21649
istex_primary_ark_67375_WNG_MQ0JVD6K_W
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: New York
PublicationTitle International journal of intelligent systems
PublicationTitleAlternate Int. J. Intell. Syst
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: John Wiley & Sons, Inc
References Darwiche A. Modeling and reasoning with Bayesian networks, 1st edition. Cambridge, UK: Cambridge University Press; 2009.
Peot MA, Shachter RD. Fusion and propagation with multiple observations in belief networks. Artif Intell 1991;48:299-318.
Chavira M, Darwiche A, Jaeger M. Compiling relational Bayesian networks for exact inference. Int J Approx Reasoning 2006;42(1,2):4-20.
Cooper GF. Computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell 1990; pp. 393-405.
Cadoli M, Donini FM. A survey on knowledge compilation. AI Commun 1998;10(3,4):137-150.
Jaakkola TS, Jordan MI. Variational probabilistic inference and the qmr dt network. J Artif Intell Res 1999;10:291-322.
Ayachi R, Ben Amor N, Benferhat S. Inference using compiled product-based possibilistic networks. Inf Process Manage Uncertainty 2013;470-480.
Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B 1988;50:157-224.
Geman S, Geman D. Stochastic relaxations, gibbs distributions and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984;6(6):721-742.
Weiss Y. Correctness of local probability propagation in graphical models with loops. Neural Comput 2000;12(1):1-41.
Pearl J. Fusion, propagation and structuring in belief networks. Artif Intell 1986;29:241-288.
Ben Amor N, Benferhat S, Mellouli K. Anytime propagation algorithm for min-based possibilistic graphs. Soft Comput 2003;8:150-161.
Mittal A. Bayesian network technologies: applications and graphical models. Hershey, PA: IGI Publishing; 2007.
Pearl J. Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann; 1988.
Krishna Prasad PESN, Madhavi K, Prasad BDCN. Representation of uncertain data using possibilistic network models. Comput Sci Inf Technol, 2012; pp. 267-278.
Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. London: Chapman and Hall/CRC; 1996.
McEliece RJ, MacKay DJC, Cheng J-F. Turbo decoding as an instance of Pearl's "belief propagation" algorithm. In: IEEE Journal on Selected Areas in Communication, Berlin, Germany: Springer-Verlag; 1998;16(2):140-152.
Borgelt C, Kruse R. Graphical models: methods for data analysis and mining. New York: Wiley; 2002.
Cowell RG, Dawid PA, Lauritzen SL, Spiegelhalter DJ. Probabilistic networks and expert systems (Information science and statistics). New York: Springer; 2003.
2012
2011
2010
2009
1997
2008
2007
1996
1994
1988; 50
2003
2002
1999
1998; 16
2006; 42
1991; 48
1990
2000; 12
2003; 8
1984; 6
1986; 29
1999; 10
1983
2013
1998; 10
1989
1988
References_xml – reference: Mittal A. Bayesian network technologies: applications and graphical models. Hershey, PA: IGI Publishing; 2007.
– reference: Pearl J. Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann; 1988.
– reference: Darwiche A. Modeling and reasoning with Bayesian networks, 1st edition. Cambridge, UK: Cambridge University Press; 2009.
– reference: Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B 1988;50:157-224.
– reference: Chavira M, Darwiche A, Jaeger M. Compiling relational Bayesian networks for exact inference. Int J Approx Reasoning 2006;42(1,2):4-20.
– reference: Cooper GF. Computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell 1990; pp. 393-405.
– reference: Pearl J. Fusion, propagation and structuring in belief networks. Artif Intell 1986;29:241-288.
– reference: Ben Amor N, Benferhat S, Mellouli K. Anytime propagation algorithm for min-based possibilistic graphs. Soft Comput 2003;8:150-161.
– reference: Cowell RG, Dawid PA, Lauritzen SL, Spiegelhalter DJ. Probabilistic networks and expert systems (Information science and statistics). New York: Springer; 2003.
– reference: Cadoli M, Donini FM. A survey on knowledge compilation. AI Commun 1998;10(3,4):137-150.
– reference: Weiss Y. Correctness of local probability propagation in graphical models with loops. Neural Comput 2000;12(1):1-41.
– reference: Jaakkola TS, Jordan MI. Variational probabilistic inference and the qmr dt network. J Artif Intell Res 1999;10:291-322.
– reference: Krishna Prasad PESN, Madhavi K, Prasad BDCN. Representation of uncertain data using possibilistic network models. Comput Sci Inf Technol, 2012; pp. 267-278.
– reference: McEliece RJ, MacKay DJC, Cheng J-F. Turbo decoding as an instance of Pearl's "belief propagation" algorithm. In: IEEE Journal on Selected Areas in Communication, Berlin, Germany: Springer-Verlag; 1998;16(2):140-152.
– reference: Borgelt C, Kruse R. Graphical models: methods for data analysis and mining. New York: Wiley; 2002.
– reference: Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. London: Chapman and Hall/CRC; 1996.
– reference: Peot MA, Shachter RD. Fusion and propagation with multiple observations in belief networks. Artif Intell 1991;48:299-318.
– reference: Geman S, Geman D. Stochastic relaxations, gibbs distributions and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984;6(6):721-742.
– reference: Ayachi R, Ben Amor N, Benferhat S. Inference using compiled product-based possibilistic networks. Inf Process Manage Uncertainty 2013;470-480.
– year: 2009
– volume: 50
  start-page: 157
  year: 1988
  end-page: 224
  article-title: Local computations with probabilities on graphical structures and their application to expert systems
  publication-title: Journal of the Royal Statistical Society, Series B
– start-page: 470
  year: 2013
  end-page: 480
  article-title: Inference using compiled product‐based possibilistic networks
  publication-title: Inf Process Manage Uncertainty
– year: 1994
  article-title: Réseaux d'inférence pour le raisonnement possibiliste
– year: 2007
– start-page: 267
  year: 2012
  end-page: 278
  article-title: Representation of uncertain data using possibilistic network models
  publication-title: Comput Sci Inf Technol
– year: 2003
– year: 1996
– volume: 8
  start-page: 150
  year: 2003
  end-page: 161
  article-title: Anytime propagation algorithm for min‐based possibilistic graphs
  publication-title: Soft Comput
– volume: 42
  start-page: 4
  issue: 1,2
  year: 2006
  end-page: 20
  article-title: Compiling relational Bayesian networks for exact inference
  publication-title: Int J Approx Reasoning
– start-page: 467
  year: 1999
  end-page: 475
– volume: 29
  start-page: 241
  year: 1986
  end-page: 288
  article-title: Fusion, propagation and structuring in belief networks
  publication-title: Artif Intell
– start-page: 108
  year: 1997
  end-page: 121
  article-title: Background and perspectives of possibilistic graphical models, qualitative and quantitative practical reasoning (ECSQARU/FAPR'97)
– year: 2013
  article-title: A generic framework for a compilation‐based inference in probabilistic and possibilistic networks
– start-page: 190
  year: 1983
  end-page: 193
– volume: 12
  start-page: 1
  issue: 1
  year: 2000
  end-page: 41
  article-title: Correctness of local probability propagation in graphical models with loops
  publication-title: Neural Comput
– year: 2010
  article-title: Compiling possibilistic networks: alternative approaches to possibilistic inference
– year: 2002
– year: 1988
– volume: 6
  start-page: 721
  issue: 6
  year: 1984
  end-page: 742
  article-title: Stochastic relaxations, gibbs distributions and the bayesian restoration of images
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 1989
  article-title: Bounded conditioning: Flexible inference for decisions under scarce resources
– start-page: 393
  year: 1990
  end-page: 405
  article-title: Computational complexity of probabilistic inference using Bayesian belief networks
  publication-title: Artif Intell
– start-page: 329
  year: 2003
  end-page: 338
– start-page: 321
  year: 2008
  end-page: 326
  article-title: An approximate propagation algorithm for product‐based possibilistic networks
– start-page: 1
  year: 2011
  end-page: 6
– volume: 10
  start-page: 137
  issue: 3,4
  year: 1998
  end-page: 150
  article-title: A survey on knowledge compilation
  publication-title: AI Commun
– volume: 48
  start-page: 299
  year: 1991
  end-page: 318
  article-title: Fusion and propagation with multiple observations in belief networks
  publication-title: Artif Intell
– volume: 16
  start-page: 140
  issue: 2
  year: 1998
  end-page: 152
  article-title: Turbo decoding as an instance of Pearl's “belief propagation” algorithm
  publication-title: IEEE Journal on Selected Areas in Communication, Berlin, Germany: Springer‐Verlag
– volume: 10
  start-page: 291
  year: 1999
  end-page: 322
  article-title: Variational probabilistic inference and the qmr dt network
  publication-title: J Artif Intell Res
SSID ssj0011745
Score 2.0327356
Snippet Min‐based (or qualitative) possibilistic networks are important tools to efficiently and compactly represent and analyze uncertain information. Inference is a...
Min-based (or qualitative) possibilistic networks are important tools to efficiently and compactly represent and analyze uncertain information. Inference is a...
SourceID proquest
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 615
SubjectTerms Algorithms
Applied sciences
Approximation
Computer science; control theory; systems
Convergence
Exact sciences and technology
Inference
Information retrieval. Graph
Intelligent systems
Networks
Propagation
Queries
Tasks
Theoretical computing
Title An Approximate Algorithm for Min-Based Possibilistic Networks
URI https://api.istex.fr/ark:/67375/WNG-MQ0JVD6K-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.21649
https://www.proquest.com/docview/1518534953
https://www.proquest.com/docview/1541422410
https://www.proquest.com/docview/1671563642
Volume 29
WOSCitedRecordID wos000337507300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 0884-8173
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qUxZsKE-RUiojIcQm1Bk7caIu0EAZXm1UUEu7sxw_IGqbQZNp1SWfwDfyJVzHmUA3CIldpNhJ5OMbn2sfHwM80ZgYVybJYyucjjnnLlYpszEODWnm181o1Zm47oqyzI-Pi_0V2F7uhQn-EMOEm4-M7n_tA1xV7dZv09C6WTwfI9kvrsHqGPttOoLVnU_Tw91hEQHJdhpIJI_zRLClsRAdbw2VkZP65rz0mkjVYrO4cJ7FFcL5J23txp3p2n998S242dNNMgn94zas2OYOrC2PciB9ZN-FF5OGTLy9-GWNFNaSyemX2bxefD0jSGrJXt38_P7jJQ54huzP2qCo9QbPpAwq8vYeHE5fH7x6G_dnK8Q1S0URc0xThMPgLBxCpVLnEsylKsqYEDrjtjDcWcepY7qgKTXUVLxSXoeIoOYVZ_dh1Mwa-wAIM0mV6twaYxjXOlcsUdpmCp9qlGAsgqddE8tvwT9DqvmJl5OJVB6Vb-TeR_r-8072QR5FsHkFg6GCN9nzxnARbCxBkX2otRIpC1IOL5ON4PFwG4PEr3yoxs7OfRnu57p4Qv9SJhOYyzLMxyJ41sE4vD9YO48lAig7AOW78qC7WP_3og_hBpItHqS-GzBazM_tI7iuLxZ1O9_s--4vuUfy0w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qLRJsKE8R-iBICLEJdcZOnEhIaKAMLZ2JCpo-dpbjB0RApppMUZd8At_Il_Q6zgS6QUjsIsV5yOfe-Fz75BjgqcLCuNRxFhluVcQYs5FMqIlwaEhSt25GytbEdcyLIjs9zQ9X4OXyXxjvD9FPuLnMaL_XLsHdhPTOb9fQql68GCDbz6_BGsMwwvhe2_04Ohr3qwjIthPPIlmUxZwunYXIYKe_GEmp688LJ4qUDfaL9RtaXGGcf_LWduAZrf_fK9-GWx3hDIc-Qu7AiqnvwvpyM4ewy-178GpYh0NnMH5RIYk14fDrp9m8Wnz-FiKtDSdV_evHz9c45OnwcNZ4Ta2zeA4LryNv7sPR6O30zV7U7a4QVTThecSwUOEW0zO3CJZMrI2xmioJpZyrlJlcM2ssI5aqnCREE12yUjolIsKalYw-gNV6VpuHEFIdl4nKjNaaMqUySWOpTCrxrlpySgN41vaxOPMOGkLOvzhBGU_ESfFOTD6Q98e76YE4CWD7Cgj9Bc5mz1nDBbC5REV0ydYIJC1IOpxQNoAn_WlME7f2IWszO3dtmJvtYjH5S5uUYzVLsSIL4HmLY_98b-48EAigaAEU-8W0PXj0700fw4296WQsxvvFwQbcROrFvPB3E1YX83OzBdfV90XVzLe7QL4EPvb2ww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qU4S6oTxFoJQgIcQm1Bk7cSIhoYFhoHQaDaivneX4USIgU02mqEs-gW_kS7iOM4FuEBK7SLGTyCc3Ptc-ORfgicLEuNRxFhluVcQYs5FMqIlwakhSt29GytbEdcqLIjs5yWdr8GL1L4z3h-gX3FxktN9rF-DmTNud366hVb18PkS2n1-BdeaKyAxgffxxcjjtdxGQbSeeRbIoizldOQuR4U7fGUmpG88LJ4qUDY6L9QUtLjHOP3lrO_FMNv_vkW_A9Y5whiP_htyENVPfgs1VMYewi-3b8HJUhyNnMH5RIYk14ejL6XxRLT99DZHWhvtV_fP7j1c45elwNm-8ptZZPIeF15E3d-Bw8ubg9buoq64QVTThecQwUeEWwzO3CJZMrI0xmyoJpZyrlJlcM2ssI5aqnCREE12yUjolIsKalYzehUE9r809CKmOy0RlRmtNmVKZpLFUJpV4VS05pQE8bcdYnHkHDSEXn52gjCfiuHgr9j-Q90fjdE8cB7B9CYS-g7PZc9ZwAWytUBFdsDUCSQuSDieUDeBxfxrDxO19yNrMz10b5la7WEz-0iblmM1SzMgCeNbi2N_fmzsPBQIoWgDFbnHQHtz_96aP4NpsPBHT3WLvAWwg82Je97sFg-Xi3DyEq-rbsmoW2917_AvYw_Y-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approximate+Algorithm+for+Min-Based+Possibilistic+Networks&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Ajroud%2C+Amen&rft.au=Benferhat%2C+Salem&rft.date=2014-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=29&rft.issue=7&rft.spage=615&rft.epage=633&rft_id=info:doi/10.1002%2Fint.21649&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MQ0JVD6K_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon