Facial Action Unit Detection using 3D Face Landmarks for Pain Detection

Automatic detection of facial action units (AUs) has recently gained attention for its applications in facial expression analysis. However, using AUs in research can be challenging since they are typically manually annotated, which can be time-consuming, repetitive, and error-prone. Advancements in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Jg. 2023; S. 1 - 5
Hauptverfasser: Feghoul, Kevin, Bouazizi, Mondher, Maia, Deise Santana
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 24.07.2023
Schlagworte:
ISSN:2694-0604, 2694-0604
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Automatic detection of facial action units (AUs) has recently gained attention for its applications in facial expression analysis. However, using AUs in research can be challenging since they are typically manually annotated, which can be time-consuming, repetitive, and error-prone. Advancements in automated AU detection can greatly reduce the time required for this task and improve the reliability of annotations for downstream tasks, such as pain detection. In this study, we present an efficient method for detecting AUs using only 3D face landmarks. Using the detected AUs, we trained state-of-the-art deep learning models to detect pain, which validates the effectiveness of the AU detection model. Our study also establishes a new benchmark for pain detection on the BP4D+ dataset, demonstrating an 11.13% improvement in F1-score and a 3.09% improvement in accuracy using a Transformer model compared to existing studies. Our results show that utilizing only eight predicted AUs still achieves competitive results when compared to using all 34 ground-truth AUs.
AbstractList Automatic detection of facial action units (AUs) has recently gained attention for its applications in facial expression analysis. However, using AUs in research can be challenging since they are typically manually annotated, which can be time-consuming, repetitive, and error-prone. Advancements in automated AU detection can greatly reduce the time required for this task and improve the reliability of annotations for downstream tasks, such as pain detection. In this study, we present an efficient method for detecting AUs using only 3D face landmarks. Using the detected AUs, we trained state-of-the-art deep learning models to detect pain, which validates the effectiveness of the AU detection model. Our study also establishes a new benchmark for pain detection on the BP4D+ dataset, demonstrating an 11.13% improvement in F1-score and a 3.09% improvement in accuracy using a Transformer model compared to existing studies. Our results show that utilizing only eight predicted AUs still achieves competitive results when compared to using all 34 ground-truth AUs.
Automatic detection of facial action units (AUs) has recently gained attention for its applications in facial expression analysis. However, using AUs in research can be challenging since they are typically manually annotated, which can be time-consuming, repetitive, and error-prone. Advancements in automated AU detection can greatly reduce the time required for this task and improve the reliability of annotations for downstream tasks, such as pain detection. In this study, we present an efficient method for detecting AUs using only 3D face landmarks. Using the detected AUs, we trained state-of-the-art deep learning models to detect pain, which validates the effectiveness of the AU detection model. Our study also establishes a new benchmark for pain detection on the BP4D+ dataset, demonstrating an 11.13% improvement in F1-score and a 3.09% improvement in accuracy using a Transformer model compared to existing studies. Our results show that utilizing only eight predicted AUs still achieves competitive results when compared to using all 34 ground-truth AUs.Automatic detection of facial action units (AUs) has recently gained attention for its applications in facial expression analysis. However, using AUs in research can be challenging since they are typically manually annotated, which can be time-consuming, repetitive, and error-prone. Advancements in automated AU detection can greatly reduce the time required for this task and improve the reliability of annotations for downstream tasks, such as pain detection. In this study, we present an efficient method for detecting AUs using only 3D face landmarks. Using the detected AUs, we trained state-of-the-art deep learning models to detect pain, which validates the effectiveness of the AU detection model. Our study also establishes a new benchmark for pain detection on the BP4D+ dataset, demonstrating an 11.13% improvement in F1-score and a 3.09% improvement in accuracy using a Transformer model compared to existing studies. Our results show that utilizing only eight predicted AUs still achieves competitive results when compared to using all 34 ground-truth AUs.
Author Maia, Deise Santana
Feghoul, Kevin
Bouazizi, Mondher
Author_xml – sequence: 1
  givenname: Kevin
  surname: Feghoul
  fullname: Feghoul, Kevin
  email: kevin.feghoul@univ-lille.fr
  organization: University of Lille,Inserm, CHU Lille, UMRS1172 - LilNCog, UMR 9189 CRIStAL,Lille,France,F-59000
– sequence: 2
  givenname: Mondher
  surname: Bouazizi
  fullname: Bouazizi, Mondher
  email: mondher.bouazizi@keio.jp
  organization: Keio University,Faculty of Science and Technology,Japan
– sequence: 3
  givenname: Deise Santana
  surname: Maia
  fullname: Maia, Deise Santana
  email: deise.santanamaia@univ-lille.fr
  organization: University of Lille,CNRS, Centrale Lille, UMR 9189 CRIStAL,Lille,France,F-59000
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38083153$$D View this record in MEDLINE/PubMed
BookMark eNpN0M1OwzAMAOCAhtgYewMEOXLpSOqkSY5jfyANwYGdqzRJUUSXjqY98PZU2gacbMufLNtXaBDq4BC6o2RKKVEPy5fHOSNCimlKUphSAowQrs7QRAklgRNIGRP0HI3STLGEZIQN_uVDNInRF4QDZ1ylcImGIIkEymGE1ittvK7wzLS-DngbfIsXrnWHsos-fGBY4F45vNHB7nTzGXFZN_hN-_BHr9FFqavoJsc4RtvV8n3-lGxe18_z2SbxwHmbKFtYk0FZ9vOMUIYJYpW21hWalJlmWnCpKaFSyMIKJlJls1JwYwpnDFAGY3R_mLtv6q_OxTbf-WhcVeng6i7mqSKpgkwC9PT2SLti52y-b3y__Xd-Or4HNwfgnXO_7dN74QdDB2sp
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/EMBC40787.2023.10340059
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISBN 9798350324471
EISSN 2694-0604
EndPage 5
ExternalDocumentID 38083153
10340059
Genre orig-research
Journal Article
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i355t-9dbdc63ffacec79c470d9addeba0f6a4a758a101878bd74729d6f75ccbecc3143
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133788300116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2694-0604
IngestDate Thu Oct 02 18:48:27 EDT 2025
Thu Apr 03 06:56:53 EDT 2025
Wed Jun 26 19:24:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i355t-9dbdc63ffacec79c470d9addeba0f6a4a758a101878bd74729d6f75ccbecc3143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cir.nii.ac.jp/crid/1871709543096319360
PMID 38083153
PQID 2902936833
PQPubID 23479
PageCount 5
ParticipantIDs ieee_primary_10340059
proquest_miscellaneous_2902936833
pubmed_primary_38083153
PublicationCentury 2000
PublicationDate 2023-07-24
PublicationDateYYYYMMDD 2023-07-24
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
ssib061542107
Score 2.2338743
Snippet Automatic detection of facial action units (AUs) has recently gained attention for its applications in facial expression analysis. However, using AUs in...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Benchmark testing
Benchmarking
Biological system modeling
Deep learning
Face
Facial Expression
Gold
Humans
Pain
Pain - diagnosis
Reproducibility of Results
Three-dimensional displays
Transformers
Title Facial Action Unit Detection using 3D Face Landmarks for Pain Detection
URI https://ieeexplore.ieee.org/document/10340059
https://www.ncbi.nlm.nih.gov/pubmed/38083153
https://www.proquest.com/docview/2902936833
Volume 2023
WOSCitedRecordID wos001133788300116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7YxoMnNVatj2ZNvFKB3bJw1D700DYc1PRGlt3BNEZqWurvdwZo66UHLwSS3Q2ZGZhv3ozdK_BSI73QcS2EDmoo6WgjpCMjS0xOrVe6st_HajoNZ7MorovVy1oYACiTz6BLt2Us3y7Mmlxl-IULSdWSDdZQSlXFWhvhkT4aen8apfQEYgNEL3VOl-dGD8PJU5_CVqpLM8O7m9PquSr7IWapakbH_3zJE9baFe3xeKuOTtkB5GfseaTJJ84fy_IFTgiTD6CA6pGS3j-4GHBcBXysc_ull58rjkCWx3qe75a22Nto-Np_cerZCc4cEUThIKmtCUSW4X6jIiOVayP6l6XazQItNdoJmrp1qTC1aFL4kQ0y1TOGeIocE-esmS9yuGTcIKgLIKUuOkKCtGhR2RS0FhFqdwizNmsRFZLvqj1GsiFAm91tCJqgzFIgQuewWK8SP3IRZeBxos0uKkpvd4uQZp_1xNWeU6_ZEXGP3Ku-vGHNYrmGW3Zofor5atlBwZiFeJ3Gk04pHr9p97ZC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gIMEJEAPGM0hcO9omW5sj7MEQ3bTDQLtVaeKiCdGhreP3Y3frxoUDt1ZKrMp26s-OH4zdBeAlRnqh41oIHbRQ0tFGSEcqS0JOrFeEst-iYDAIx2M1XBWrF7UwAFAkn0GdHou7fDs1CwqV4QkXkqolt9lOQ0rfW5ZrleojfXT1frVKaQhEB4hfVlldnqvuO_3HFl1cBXWaGl4v6a0mq_wNMgtj0z3452cesuqmbI8P1wbpiG1Bdsyeupqi4vyhKGDghDF5G3JYvlLa-zsXbY6rgEc6s5969jHnCGX5UE-yzdIqe-12Rq2es5qe4EwQQ-QOMtuapkhT3G8CZWTgWkV_s0S7aVNLjZ6Cpn5dQZhYdCp8ZZtp0DCGpIoyEyeskk0zOGPcIKxrQkJ9dIQEadGnsgloLRTadwjTGqsSF-KvZYOMuGRAjd2WDI1Ra-kqQmcwXcxjX7mIM5CcqLHTJafXu0VI088a4vwPqjdsrzfqR3H0PHi5YPskSQq2-vKSVfLZAq7YrvnOJ_PZdaEeP3qTt5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Facial+Action+Unit+Detection+using+3D+Face+Landmarks+for+Pain+Detection&rft.au=Feghoul%2C+Kevin&rft.au=Bouazizi%2C+Mondher&rft.au=Maia%2C+Deise+Santana&rft.date=2023-07-24&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FEMBC40787.2023.10340059&rft.externalDocID=10340059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon