Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS2

Due to the novel optical and optoelectronic properties, 2D materials have received increasing interests for optoelectronics applications. Discovering new properties and functionalities of 2D materials is challenging yet promising. Here broadband polarization sensitive photodetectors based on few lay...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 26; no. 8; pp. 1169 - 1177
Main Authors: Liu, Fucai, Zheng, Shoujun, He, Xuexia, Chaturvedi, Apoorva, He, Junfeng, Chow, Wai Leong, Mion, Thomas R., Wang, Xingli, Zhou, Jiadong, Fu, Qundong, Fan, Hong Jin, Tay, Beng Kang, Song, Li, He, Rui-Hua, Kloc, Christian, Ajayan, Pulickel M., Liu, Zheng
Format: Journal Article
Language:English
Published: Blackwell Publishing Ltd 23.02.2016
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the novel optical and optoelectronic properties, 2D materials have received increasing interests for optoelectronics applications. Discovering new properties and functionalities of 2D materials is challenging yet promising. Here broadband polarization sensitive photodetectors based on few layer ReS2 are demonstrated. The transistor based on few layer ReS2 shows an n‐type behavior with the mobility of about 40 cm2 V−1 s−1 and on/off ratio of 105. The polarization dependence of photoresponse is ascribed to the unique anisotropic in‐plane crystal structure, consistent with the optical absorption anisotropy. The linear dichroic photodetection with a high photoresponsivity reported here demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for the applications of 2D materials for light polarization detection. Polarization sensitive photodetectors are demonstrated based on anisotropic few‐layer ReS2. The transistor based on few layer ReS2 shows an n‐type behavior with a mobility of about 40 cm2 V−1 s−1 and photoresponsivity of about 103 A W−1. The polarization dependence of photoresponse is ascribed to the unique anisotropic structure. The result demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways of the applications of 2D materials for light polarization detection.
Bibliography:ark:/67375/WNG-QC2RW5GQ-H
ArticleID:ADFM201504546
istex:F579B48C298E90B8C240E9D76AA059CEA72992CE
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201504546