Parameter estimation for maximizing controllability of linear brain-machine interfaces
Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a recursive linear BMI algorithm which has been shown to smooth cursor kinematics and improve control over non-recursive linear methods. However, recu...
Uložené v:
| Vydané v: | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Ročník 2012; s. 1314 - 1317 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.01.2012
|
| Predmet: | |
| ISBN: | 1424441196, 9781424441198 |
| ISSN: | 1094-687X, 1557-170X, 2694-0604, 2694-0604 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a recursive linear BMI algorithm which has been shown to smooth cursor kinematics and improve control over non-recursive linear methods. However, recursive estimators are not without their drawbacks. Here we show that recursive decoders can decrease BMI controllability by coupling kinematic variables that the subject might expect to be unrelated. For instance, a 2D neural cursor where velocity is controlled using a KF can increase the difficulty of straight reaches by linking horizontal and vertical velocity estimates. These effects resemble force fields in arm control. Analysis of experimental data from one non-human primate controlling a position/velocity KF cursor in closed-loop shows that the presence of these force-field effects correlated with decreased performance. We designed a modified KF parameter estimation algorithm to eliminate these effects. Cursor controllability improved significantly when our modifications were used in a closed-loop BMI simulator. Thus, designing highly controllable BMIs requires parameter estimation techniques that carefully craft relationships between decoded variables. |
|---|---|
| AbstractList | Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a recursive linear BMI algorithm which has been shown to smooth cursor kinematics and improve control over non-recursive linear methods. However, recursive estimators are not without their drawbacks. Here we show that recursive decoders can decrease BMI controllability by coupling kinematic variables that the subject might expect to be unrelated. For instance, a 2D neural cursor where velocity is controlled using a KF can increase the difficulty of straight reaches by linking horizontal and vertical velocity estimates. These effects resemble force fields in arm control. Analysis of experimental data from one non-human primate controlling a position/velocity KF cursor in closed-loop shows that the presence of these force-field effects correlated with decreased performance. We designed a modified KF parameter estimation algorithm to eliminate these effects. Cursor controllability improved significantly when our modifications were used in a closed-loop BMI simulator. Thus, designing highly controllable BMIs requires parameter estimation techniques that carefully craft relationships between decoded variables. Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a recursive linear BMI algorithm which has been shown to smooth cursor kinematics and improve control over non-recursive linear methods. However, recursive estimators are not without their drawbacks. Here we show that recursive decoders can decrease BMI controllability by coupling kinematic variables that the subject might expect to be unrelated. For instance, a 2D neural cursor where velocity is controlled using a KF can increase the difficulty of straight reaches by linking horizontal and vertical velocity estimates. These effects resemble force fields in arm control. Analysis of experimental data from one non-human primate controlling a position/velocity KF cursor in closed-loop shows that the presence of these force-field effects correlated with decreased performance. We designed a modified KF parameter estimation algorithm to eliminate these effects. Cursor controllability improved significantly when our modifications were used in a closed-loop BMI simulator. Thus, designing highly controllable BMIs requires parameter estimation techniques that carefully craft relationships between decoded variables.Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a recursive linear BMI algorithm which has been shown to smooth cursor kinematics and improve control over non-recursive linear methods. However, recursive estimators are not without their drawbacks. Here we show that recursive decoders can decrease BMI controllability by coupling kinematic variables that the subject might expect to be unrelated. For instance, a 2D neural cursor where velocity is controlled using a KF can increase the difficulty of straight reaches by linking horizontal and vertical velocity estimates. These effects resemble force fields in arm control. Analysis of experimental data from one non-human primate controlling a position/velocity KF cursor in closed-loop shows that the presence of these force-field effects correlated with decreased performance. We designed a modified KF parameter estimation algorithm to eliminate these effects. Cursor controllability improved significantly when our modifications were used in a closed-loop BMI simulator. Thus, designing highly controllable BMIs requires parameter estimation techniques that carefully craft relationships between decoded variables. |
| Author | Orsborn, A. L. Gowda, S. Carmena, J. M. |
| Author_xml | – sequence: 1 givenname: S. surname: Gowda fullname: Gowda, S. organization: Dept. of Electr. Eng. & Comput. Sci. (EECS), Univ. of California Berkeley, Berkeley, CA, USA – sequence: 2 givenname: A. L. surname: Orsborn fullname: Orsborn, A. L. organization: UCB-UCSF Grad. Group in Bioeng., Univ. of California Berkeley, Berkeley, CA, USA – sequence: 3 givenname: J. M. surname: Carmena fullname: Carmena, J. M. email: carmena@eecs.berkeley.edu organization: Dept. of EECS, Univ. of California Berkeley, Berkeley, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23366140$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kE1LAzEQhuMX2mp_gAiyRy9bM8lsPo5a_IKKHlS8lWSbaGQ3q9ktqL_egNW5DMM8vMwzY7Idu-gIOQQ6BaD69OL2fDZlFNhUcBQg9QaZaKkAKylBKgmbZMSExpIKiltkDMgQEUCLbTLKAVgKJZ_3yKTv32guBYpT3CV7jHMhAOmIPN2bZFo3uFS4fgitGUIXC9-lojWfoQ3fIb4UdReH1DWNsaEJw1fR-aIJ0ZlU2GRCLFtTv-a5CDHneFO7_oDseNP0brLu--Tx8uJhdl3O765uZmfzMnDEoeTK6MoaVcslGnCm4mKpvBVC17XnleXZBXVFrWKMe64QrcquttIavAfg--TkN_c9dR-rbLBoQ1-7fGp03apfAFNcMg2syujxGl3Z1i0X7ynbpq_F3y8ycPQLBOfc_3r9ef4DIRpx1A |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/EMBC.2012.6346179 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781457717871 1457717875 |
| EISSN | 2694-0604 |
| EndPage | 1317 |
| ExternalDocumentID | 23366140 6346179 |
| Genre | orig-research Journal Article |
| GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM CGR CUY CVF ECM EIF IPLJI NPM 7X8 |
| ID | FETCH-LOGICAL-i344t-38a95ba8c7d4a1ea536d8fb669ccf35b31194950b8223f3844b8060b5991ff113 |
| IEDL.DBID | RIE |
| ISBN | 1424441196 9781424441198 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313296501143&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-687X 1557-170X 2694-0604 |
| IngestDate | Thu Oct 02 19:39:08 EDT 2025 Thu Jan 02 22:16:24 EST 2025 Wed Aug 27 02:44:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i344t-38a95ba8c7d4a1ea536d8fb669ccf35b31194950b8223f3844b8060b5991ff113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://zenodo.org/record/1267798 |
| PMID | 23366140 |
| PQID | 1283729125 |
| PQPubID | 23479 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_1283729125 ieee_primary_6346179 pubmed_primary_23366140 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
| PublicationTitleAbbrev | EMBC |
| PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000818304 ssj0020051 ssj0061641 ssib061542107 ssib053545923 ssib042469959 |
| Score | 1.9363327 |
| Snippet | Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a... |
| SourceID | proquest pubmed ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1314 |
| SubjectTerms | Algorithms Animals Biomechanical Phenomena - physiology Brain-Computer Interfaces Computer Simulation Controllability Correlation Decoding Electrodes, Implanted Error analysis Feedback control Kinematics Linear Models Macaca mulatta Male Motor Cortex - physiology Neurons - physiology Signal Processing, Computer-Assisted Task Performance and Analysis Trajectory |
| Title | Parameter estimation for maximizing controllability of linear brain-machine interfaces |
| URI | https://ieeexplore.ieee.org/document/6346179 https://www.ncbi.nlm.nih.gov/pubmed/23366140 https://www.proquest.com/docview/1283729125 |
| Volume | 2012 |
| WOSCitedRecordID | wos000313296501143&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4g8aAXH6Dig6yJRwsts-1urxKIByUclHAju-1uQiJgChj117vTFvSgB29tstumM5POt_P4BuAmUiZQAUXu3e_PIwTtSSNiL0Sh0likHZNn8EcPYjCQ43E8rMDtthfGGJMXn5kWXea5_HSRrClU1o6QO4cb78COEKLo1drGU4iaDeloUR62yNryTGfMvUiK8aapiwdBwedHXE_lvSzTnW5xu_d416WKr06rfBvRBSOSG_PLCSx_g9HcKfUP_vc5h1D_7u5jw63fOoKKmR_D_g9iwhqMhoqKtpzMGbFwFO2NzOFbNlPv09n0061iZZX7S8H0_cEWlhFmVRnTNHfCm-V1moYRI0VmqfSrDs_93lP33isnMHhT5HzloVRxqJVMRMpVYFSIUSqtjqI4SSyGGp3w3AnL1w5moEXJuZZ-5OvQoU5rgwBPoDpfzM0ZMK5I81aINFFcYKIx8a1EG1k_RaHDBtRIQpPXgmRjUgqnAdcbWU-c4VM2Q83NYr2cBMTb04kdQGvAaaGE7eaNws5_f-gF7JGGi0jKJVRX2dpcwW7ytpous6azrrFs5tb1BeBCxS8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQwIuvGE8g8SRQjOnTXoFgYYY0w6AdquSNpEmsQ2NDQG_nrjtBgc4cGulpFVtq_7ix2eA01hbrjlF7v3vLyAEHSgrkyBCqfNE5g1bZPCfWrLdVt1u0qnB2awXxlpbFJ_Zc7oscvn5MJtQqOwiRuEdbjIHC5EQDV52a80iKkTOhnS4qI5bZG9FrjMRQaxkd9rWJTgvGf2I7am6V1XC0y--uL6_vKKar8Z59T4iDEYkRxZWM1j-hqOFW7pZ_d8HrcHWd38f68w81zrU7GADVn5QE27CU0dT2ZaXOiMejrLBkXmEy_r6vdfvffpVrKpzfy65vj_Y0DFCrXrEDE2eCPpFpaZlxEkxclT8tQWPN9cPV82gmsEQ9FCIcYBKJ5HRKpO50NzqCONcORPHSZY5jAx64fkzVmg80ECHSgijwjg0kcedznGO2zA_GA7sLjChSfdOyjzTQmJmMAudQhe7MEdpojpskoTSl5JmI62EU4eTqaxTb_qUz9ADO5y8ppyYexqJh2h12CmVMNs8Vdje7w89hqXmw30rbd227_ZhmbRdxlUOYH48mthDWMzexr3X0VFhY1-rnceO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Parameter+estimation+for+maximizing+controllability+of+linear+brain-machine+interfaces&rft.au=Gowda%2C+S.&rft.au=Orsborn%2C+A.+L.&rft.au=Carmena%2C+J.+M.&rft.date=2012-01-01&rft.pub=IEEE&rft.isbn=9781424441198&rft.issn=1094-687X&rft.spage=1314&rft.epage=1317&rft_id=info:doi/10.1109%2FEMBC.2012.6346179&rft_id=info%3Apmid%2F23366140&rft.externalDocID=6346179 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon |

