MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling

Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) Jg. 2024; S. 5851 - 5862
Hauptverfasser: Zhang, Xuzhe, Wu, Yuhao, Angelini, Elsa, Li, Ang, Guo, Jia, Rasmussen, Jerod M., OConnor, Thomas G., Wadhwa, Pathik D., Jackowski, Andrea Parolin, Li, Hai, Posner, Jonathan, Laine, Andrew F., Wang, Yun
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2024
Schlagworte:
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!