MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling

Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) Ročník 2024; s. 5851 - 5862
Hlavní autori: Zhang, Xuzhe, Wu, Yuhao, Angelini, Elsa, Li, Ang, Guo, Jia, Rasmussen, Jerod M., OConnor, Thomas G., Wadhwa, Pathik D., Jackowski, Andrea Parolin, Li, Hai, Posner, Jonathan, Laine, Andrew F., Wang, Yun
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.06.2024
Predmet:
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a unified UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to centralized, federated, and test-time UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/XuzheZ/MAPSeg/.
AbstractList Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to , , and UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/Xuzhez/MAPSeg/.
Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a unified UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to centralized, federated, and test-time UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/Xuzhez/MAPSeg/.
Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a unified UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to centralized, federated, and test-time UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/Xuzhez/MAPSeg/.Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a unified UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to centralized, federated, and test-time UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/Xuzhez/MAPSeg/.
Author Angelini, Elsa
Li, Ang
Wadhwa, Pathik D.
Rasmussen, Jerod M.
Jackowski, Andrea Parolin
OConnor, Thomas G.
Zhang, Xuzhe
Posner, Jonathan
Laine, Andrew F.
Wang, Yun
Wu, Yuhao
Li, Hai
Guo, Jia
AuthorAffiliation 6 University of Rochester
8 Emory University
4 University of Maryland, College Park
3 Télécom Paris, LTCI, Institut Polytechnique de Paris
2 Duke University
7 Universidade Federal de São Paulo
1 Columbia University
5 University of California, Irvine
AuthorAffiliation_xml – name: 1 Columbia University
– name: 7 Universidade Federal de São Paulo
– name: 2 Duke University
– name: 6 University of Rochester
– name: 8 Emory University
– name: 3 Télécom Paris, LTCI, Institut Polytechnique de Paris
– name: 4 University of Maryland, College Park
– name: 5 University of California, Irvine
Author_xml – sequence: 1
  givenname: Xuzhe
  surname: Zhang
  fullname: Zhang, Xuzhe
  organization: Columbia University
– sequence: 2
  givenname: Yuhao
  surname: Wu
  fullname: Wu, Yuhao
  organization: Duke University
– sequence: 3
  givenname: Elsa
  surname: Angelini
  fullname: Angelini, Elsa
  organization: Columbia University
– sequence: 4
  givenname: Ang
  surname: Li
  fullname: Li, Ang
  organization: University of Maryland,College Park
– sequence: 5
  givenname: Jia
  surname: Guo
  fullname: Guo, Jia
  organization: Columbia University
– sequence: 6
  givenname: Jerod M.
  surname: Rasmussen
  fullname: Rasmussen, Jerod M.
  organization: University of California,Irvine
– sequence: 7
  givenname: Thomas G.
  surname: OConnor
  fullname: OConnor, Thomas G.
  organization: University of Rochester
– sequence: 8
  givenname: Pathik D.
  surname: Wadhwa
  fullname: Wadhwa, Pathik D.
  organization: University of California,Irvine
– sequence: 9
  givenname: Andrea Parolin
  surname: Jackowski
  fullname: Jackowski, Andrea Parolin
  organization: Universidade Federal de São Paulo
– sequence: 10
  givenname: Hai
  surname: Li
  fullname: Li, Hai
  organization: Duke University
– sequence: 11
  givenname: Jonathan
  surname: Posner
  fullname: Posner, Jonathan
  organization: Duke University
– sequence: 12
  givenname: Andrew F.
  surname: Laine
  fullname: Laine, Andrew F.
  organization: Columbia University
– sequence: 13
  givenname: Yun
  surname: Wang
  fullname: Wang, Yun
  organization: Duke University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39479533$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1uEzEQgA0qoqXkDSrkI5cN_tlZx1xQSIFWSkQElOvKsWcXw64d1ruVeApeGYeGqpxmxvPpG2vmGTkJMSAhF5zNOWf61err9hMIJeVcMFHOGQPQj8hMK72QwCRIxqrH5IyzShaV5vrkQX5KZil9Z4xJwXmlF0_JqdSl0iDlGfm9WW4_Y_ua3gTfeHQ5pmmPw61PubiMvfGBLp3Zj2b0MdAmDvQKRxxiiwHjlOgGnbemo9e9aZFmV4_hCL81B0lO5CXdmPQjF8tpjBhsdD601ARHtwknF4u12WGX356TJ43pEs6O8ZzcvH_3ZXVVrD9-uF4t14WXshwL0QiouG2kcIsKLFegdgqstWpnS4vCAFhpOcoGuanAaaeAccfQggN0Up6TN3fe_bTr0dn858F09X7wvRl-1dH4-v9O8N_qNt7WnIM4rDIbXh4NQ_w5YRrr3ieLXWf-7qWWXIiqLBUc0BcPh91P-XeGDFzcAR4R79v5ggA8A38AdGScJw
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
7X8
5PM
DOI 10.1109/CVPR52733.2024.00559
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9798350353006
EISSN 1063-6919
EndPage 5862
ExternalDocumentID PMC11520032
39479533
10655195
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: CNS-2112562
  funderid: 10.13039/100000001
– fundername: NICHD NIH HHS
  grantid: R00 HD100593
– fundername: NICHD NIH HHS
  grantid: R00 HD103912
– fundername: NHLBI NIH HHS
  grantid: R01 HL121270
– fundername: NIMH NIH HHS
  grantid: R01 MH121070
– fundername: NIEHS NIH HHS
  grantid: P30 ES001247
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
23M
29F
29O
6IK
ABDPE
ACGFS
IPLJI
M43
NPM
RNS
7X8
5PM
ID FETCH-LOGICAL-i334t-2f2561cf32d865c1757b75ccc7bc4ce2a55c3c1e3fe1a65d9d7501d0ec5d5ed33
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322555906025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Tue Sep 30 17:02:42 EDT 2025
Mon Jul 21 11:02:15 EDT 2025
Mon Aug 18 01:31:25 EDT 2025
Wed Aug 27 02:00:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i334t-2f2561cf32d865c1757b75ccc7bc4ce2a55c3c1e3fe1a65d9d7501d0ec5d5ed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-senior supervising authors.
Co-first authors.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11520032
PMID 39479533
PQID 3122644752
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11520032
proquest_miscellaneous_3122644752
ieee_primary_10655195
pubmed_primary_39479533
PublicationCentury 2000
PublicationDate 20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240601
  day: 1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationTitleAlternate Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
ssj0023720
Score 2.5578094
Snippet Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5851
SubjectTerms Computational modeling
Computer vision
generalization
Image segmentation
Magnetic resonance imaging
masked image modeling
medical image
Pediatrics
Reviews
self-supervised learning
Three-dimensional displays
unsupervised domain adaptation
Title MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling
URI https://ieeexplore.ieee.org/document/10655195
https://www.ncbi.nlm.nih.gov/pubmed/39479533
https://www.proquest.com/docview/3122644752
https://pubmed.ncbi.nlm.nih.gov/PMC11520032
Volume 2024
WOSCitedRecordID wos001322555906025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RqgdOBbrA8lG5EtfAJo7jhNvSUhWprSKgaG8rx2O3q2qTVbPhb_CXmXHShVblwM2WE8uyx_azZ94zwDskXJ_ZBKPCZj5KK0UpnWFkMuc85hhPKhMem9Dn5_lsVpQDWT1wYZxzIfjMvedk8OVjYzu-KqMZnilWQ9mCLa11T9baXKhIOspkRT7Q4-JJ8eHwR_mV9cUkHQMTFslWrEgaHlF5CE_eD4v8a5853v3PFj6B0R_Gnig3e9FTeOTqZ7A7QEwxTOB2D36dTctv7vKjIKzpueiibrsVrxctZY6apVnUYopm1XvoBUFaccIRMw0Zmmu6VgyeHfFlSSuRoLqWA3upFp8MV0IJeSTOTHtNmWm3blgqk1slTI2ibF2HTXRqqkCEH8HF8efvhyfR8CZDtJAyXUeJJ4wUWy8TzDNlCXzoSitrra5syo-LKWWljZ30LjaZwgIJksQ4cVahcijlc9ium9q9BKEV0umt8D6WOkV28fpcGVRYFSatqnQMI-7g-aqX3Zjf9u0YDm7Hbk5zgR0cJvTAXMZMC061Ssbwoh_Lzd-ySDWH0o4hvzPKmw9YZ_tuSb24CnrbBJo5hC959Y8GvYbHbGB9ANkb2F7fdO4t7Nif60V7s0-2Osv3g63-BlFy7Yk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgILGncSmsXI3Ea6CO7TjhrWxMnWirCDa0t8jxsaFCTaql4W_wlzknyQpD8MCbLSeW5etnn_N9h7FXgLg-cTFEmUtCpEqNKZNAZBPvA6QgJqXtgk2Y5TK9uMjygazecWG8953zmX9Nyc6WD7Vr6akMV3iiSQ3lJrullYpFT9faPalIvMwkWToQ5MQke3P0Of9ICmMSL4IxyWRr0iTtwqj8DVH-6Rj520lzcvCfbbzLRr84ezzfnUb32A1f3WcHA8jkwxJuHrAfi2n-yX95yxFtBio6r5p2QztGg5njem1XFZ-C3fQ2eo6gls_IZ6bGqebrtuGDbYefrnEv4ljXeuAvVfydpUowIY_5wjbfMDNttzWJZVKruK2A541voY7mtuyo8CN2fvL-7GgWDVEZopWUahvFAVGScEHGkCbaIfwwpdHOOVM6ReHFtHbSCS-DFzbRkAGCEgET7zRoD1I-ZHtVXflDxo0GvL9lIQhpFJCRN6TagoYys6os1ZiNqIOLTS-8UVz17Zi9vBq7AlcDmThs1wOFFEQMVkbHY_aoH8vd3zJThpxpxyy9Nsq7D0hp-3pJtfraKW4jbCYnvvjxPxr0gt2ZnS3mxfx0-eEJ26fJ1ruTPWV728vWP2O33fftqrl83s3Yny5O7-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=MAPSeg%3A+Unified+Unsupervised+Domain+Adaptation+for+Heterogeneous+Medical+Image+Segmentation+Based+on+3D+Masked+Autoencoding+and+Pseudo-Labeling&rft.au=Zhang%2C+Xuzhe&rft.au=Wu%2C+Yuhao&rft.au=Angelini%2C+Elsa&rft.au=Li%2C+Ang&rft.date=2024-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5851&rft.epage=5862&rft_id=info:doi/10.1109%2FCVPR52733.2024.00559&rft.externalDocID=10655195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon