Enforcing convexity for improved alignment with constrained local models
Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/ tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimiz...
Uloženo v:
| Vydáno v: | 2008 IEEE Conference on Computer Vision and Pattern Recognition Ročník 2008; s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
23.06.2008
|
| Témata: | |
| ISBN: | 9781424422425, 1424422426 |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/ tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive. |
|---|---|
| AbstractList | Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive. Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive.Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive. |
| Author | Cohn, Jeffrey F. Lucey, Simon Yang Wang |
| Author_xml | – sequence: 1 surname: Yang Wang fullname: Yang Wang email: wangy@cs.cmu.edu organization: The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA – sequence: 2 givenname: Simon surname: Lucey fullname: Lucey, Simon email: slucey@cs.cmu.edu organization: The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA – sequence: 3 givenname: Jeffrey F. surname: Cohn fullname: Cohn, Jeffrey F. email: jeffcohn@cs.cmu.edu organization: The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20622926$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkV1LwzAUhqNO3Jz7ASJIL73pzFfT5EaQMZ0wUES9LWmabpE2mU033b83sjm2c3PgPC_v-ToHHeusBuASwSFCUNyOPl5ehxhCPqQJTznkR2AgUo4ophRjSvAx6CHISMwEEicHDCedPdYFA-8_YQiaEIbYGehiyDAWmPXAZGxL1yhjZ5FydqV_TLuOQiUy9aJxK11EsjIzW2vbRt-mnf-pfNtIYwOqnJJVVLtCV_4CnJay8nqwzX3w_jB-G03i6fPj0-h-GhuCRRuXqKSUSp4KBYsiJ4pIxQUrcl1KWBJc8kTkCcdIpKwUGPGwASFKapErQnNI-uBu47tY5rUuVBiskVW2aEwtm3XmpMkOiTXzbOZWGeZCpDgJBjdbg8Z9LbVvs9p4patKWu2WPkOcJESEAVGQXu_32jX5P18QXG0ERmu9w9t_kV-ISoU1 |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO NPM 7X8 5PM |
| DOI | 10.1109/CVPR.2008.4587808 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9781424422432 1424422434 |
| EISSN | 1063-6919 |
| EndPage | 8 |
| ExternalDocumentID | PMC2899725 20622926 4587808 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH051435 |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS NPM 7X8 5PM |
| ID | FETCH-LOGICAL-i329t-f1f444a879c0ddb3c3ac896dbefa0f32f859b5821976f921869133cae9bc34b03 |
| IEDL.DBID | RIE |
| ISBN | 9781424422425 1424422426 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259736803044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Thu Aug 21 13:34:01 EDT 2025 Sun Nov 09 09:25:17 EST 2025 Mon Jul 21 05:17:46 EDT 2025 Wed Aug 27 02:30:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i329t-f1f444a879c0ddb3c3ac896dbefa0f32f859b5821976f921869133cae9bc34b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1109/CVPR.2008.4587808 |
| PMID | 20622926 |
| PQID | 1835398791 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | pubmed_primary_20622926 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2899725 proquest_miscellaneous_1835398791 ieee_primary_4587808 |
| PublicationCentury | 2000 |
| PublicationDate | 20080623 |
| PublicationDateYYYYMMDD | 2008-06-23 |
| PublicationDate_xml | – month: 6 year: 2008 text: 20080623 day: 23 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | 2008 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationTitleAlternate | Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453616 ssj0023720 ssj0003211698 |
| Score | 2.3027775 |
| Snippet | Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/ tracking in comparison to leading holistic... Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/tracking in comparison to leading holistic approaches... |
| SourceID | pubmedcentral proquest pubmed ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Active appearance model Active noise reduction Constraint optimization Image databases Lighting Noise shaping Optimization methods Response surface methodology Robots Shape |
| Title | Enforcing convexity for improved alignment with constrained local models |
| URI | https://ieeexplore.ieee.org/document/4587808 https://www.ncbi.nlm.nih.gov/pubmed/20622926 https://www.proquest.com/docview/1835398791 https://pubmed.ncbi.nlm.nih.gov/PMC2899725 |
| Volume | 2008 |
| WOSCitedRecordID | wos000259736803044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLYAceAEu7wGFtSVOFJomzSPMwJxQGi0WtDcRkmawFw6aDqD-PnY6QNYcdlb81LT2E0c258NcOYrqbjjLDXEwZwH_KWUVSkvLbJzmVnGIlD4Tt7fq8lEj9fgfMDCeO-j85m_oMdoy6_mbkWqskteKqkI2bsupWixWoM-BUUTJjpRh8oMbzZCDxaFgrKxRMunYKnQue5BXgWdUX3sp65cdubPPNOXV4_jP63LZfd2Ch-ciaLQFI8hZmT5Tjj918fy06F1s_1_n7sDex_ov2Q8nGs_YM3XP2G7E1eTbjNosKrPCNHX7cLtNaGbHA5Lojv7G8r4CdYks6i7wOEo9j9FB4SENMDUq4lZKrApHqtJTM3T7MHDzfXfq9u0y9WQzlihl2nIA-fcKKldVlWWOWac0qKyPpgssCKoUlsC5aL4E3RMhIW3Y2e8to5xm7F92KjntT-EpOLG4D4S8jJ47ozVKFQaa4QMmXNKmhHs0lpNX9pwHNNumUbwu6fCFH8RsnuY2s9XzRR3rZJpnFo-goOWKsPgnpQjkF_oNXSg8NtfW-rZcwzDTVdVWZRH30_nGLZa1xKRFuwXbCwXK38Cm-51OWsWp8jBE3UaOfgd_GvnuA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VpRKcSh_AtpQGiWNDEz8S-1y1WsR2tUKl6i2yHRv2kkXNLuLnM-M8aKteuMUvxfE4ns_zBPjk61IJJ3hqaAcLEfCXUlalQlrczjKznEdH4Vk5n6u7O73YgrPRF8Z7H43P_Gd6jLr8euU2JCo7F1KVijx7X0ghWNZ5a40SFQQnvOjBDpU53m0KPeoUGOVjibrPgqeFzvXg5sWISw3Rn_qy7BWgeabPL24X3zqjy_79FEA4KxjTFJEh5mR5Dp4-tbJ8wLaudv_vg1_D4T__v2QxcrY92PLNPuz2gDXpj4MWq4acEEPdAUwvyb_J4bAkGrT_QZSfYE2yjNILHI7A_0c0QUhIBky92pinApsiY01icp72EL5fXd5cTNM-W0O65Eyv05AHIYRRpXZZXVvuuHFKF7X1wWSBs6CktuSWiwAo6JgKC-_HznhtHRc2429gu1k1_h0ktTAGT5KQy-CFM1YjrDTWFGXInFOlmcABrVX1qwvIUfXLNIGPAxUq_ElI82Eav9q0FZ5bkmucWj6Btx1VxsEDKSdQPqLX2IECcD9uaZY_YyBuuqyWTB49P51TeDm9uZ5Vsy_zr8fwqjM0KVLG38P2-n7jT2DH_V4v2_sPcR__BbtP6hc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Enforcing+convexity+for+improved+alignment+with+constrained+local+models&rft.au=Yang+Wang&rft.au=Lucey%2C+Simon&rft.au=Cohn%2C+Jeffrey+F.&rft.date=2008-06-23&rft.pub=IEEE&rft.isbn=9781424422425&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2008.4587808&rft_id=info%3Apmid%2F20622926&rft.externalDocID=4587808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |

