Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator

To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct mat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 IEEE Conference on Computer Vision and Pattern Recognition Ročník 2008; s. 1 - 7
Hlavní autoři: Wang, Hanzi, Mirota, Daniel, Ishii, Masaru, Hager, Gregory D.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 23.06.2008
Témata:
ISBN:9781424422425, 1424422426
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.
AbstractList To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.
To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.
Author Wang, Hanzi
Hager, Gregory D.
Mirota, Daniel
Ishii, Masaru
AuthorAffiliation 2 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Bayview Medical Center, Baltimore, MD, 21224
1 Computer Science Department, Johns Hopkins University, Baltimore, MD, 21218
AuthorAffiliation_xml – name: 1 Computer Science Department, Johns Hopkins University, Baltimore, MD, 21218
– name: 2 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Bayview Medical Center, Baltimore, MD, 21224
Author_xml – sequence: 1
  givenname: Hanzi
  surname: Wang
  fullname: Wang, Hanzi
  organization: Computer Science Department, Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 2
  givenname: Daniel
  surname: Mirota
  fullname: Mirota, Daniel
  organization: Computer Science Department, Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 3
  givenname: Masaru
  surname: Ishii
  fullname: Ishii, Masaru
  organization: Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Bayview Medical Center, Baltimore, MD, 21224, USA
– sequence: 4
  givenname: Gregory D.
  surname: Hager
  fullname: Hager, Gregory D.
  organization: Computer Science Department, Johns Hopkins University, Baltimore, MD, 21218, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20607128$$D View this record in MEDLINE/PubMed
BookMark eNpVUclOHDEQdRKiQMh8QBQp8jGXmXhrL5dIaBRIBBKILNeW210NjrrtwXZPxDF_jhUGBHWpkt6r92p5i_ZCDIDQe0pWlBLzef374nLFCNEr0WgltXqBFkZpKpgQjAnOXqIDSiRfSkPNq2cYa_aeYPtokfMfUkM0XFL5Bu0zIomiTB-gf5exm3PBUyw-Bgy5-Mn-L23ocS5pdmVOgBO4uIV0i4cUJwyhj9nFjXe40q8AZ7iZITjI-K8v17UXH_V2U_wW8A9nR8CnkAKMeB1DhpDn_OAU0zv0erBjhsUuH6Jfx19_rr8tz85Pvq-PzpaeM1OWttPggA5iaHrurFFUcwDJByVpQ2BwSoJRlvKmJ1p11ErhetJpKoWoTcAP0Zd73c3cTdA7CCXZsd2kOka6baP17XMk-Ov2Km5bpk3DlKwCn3YCKdZtc2knnx2Mow0Q59zWgRpBuBGsUj8-9Xo0ebh7JXy4J3gAeIR3j-Z3grGbEg
ContentType Conference Proceeding
Journal Article
Copyright 2008 IEEE 2008
Copyright_xml – notice: 2008 IEEE 2008
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
7X8
5PM
DOI 10.1109/CVPR.2008.4587687
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Computer Science
EISBN 9781424422432
1424422434
EISSN 1063-6919
EndPage 7
ExternalDocumentID PMC2895276
20607128
4587687
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB005201
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
NPM
7X8
5PM
ID FETCH-LOGICAL-i329t-ab8ece1f4f5d3ca97183ee63f76150efc76e97a135d087b1a64cd0b81644f4fe3
IEDL.DBID RIE
ISBN 9781424422425
1424422426
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259736802052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Thu Aug 21 13:45:33 EDT 2025
Fri Sep 05 07:26:35 EDT 2025
Mon Jul 21 05:17:08 EDT 2025
Wed Aug 27 02:29:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i329t-ab8ece1f4f5d3ca97183ee63f76150efc76e97a135d087b1a64cd0b81644f4fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1109/CVPR.2008.4587687
PMID 20607128
PQID 1835403942
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895276
proquest_miscellaneous_1835403942
ieee_primary_4587687
pubmed_primary_20607128
PublicationCentury 2000
PublicationDate 20080623
PublicationDateYYYYMMDD 2008-06-23
PublicationDate_xml – month: 6
  year: 2008
  text: 20080623
  day: 23
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2008 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationTitleAlternate Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453616
ssj0023720
ssj0003211698
Score 2.0767736
Snippet To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only...
SourceID pubmedcentral
proquest
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Anatomy
Biomedical imaging
Cameras
Image reconstruction
Image sequences
Kernel
Motion estimation
Robustness
Statistics
Surgery
Title Robust motion estimation and structure recovery from endoscopic image sequences with an Adaptive Scale Kernel Consensus estimator
URI https://ieeexplore.ieee.org/document/4587687
https://www.ncbi.nlm.nih.gov/pubmed/20607128
https://www.proquest.com/docview/1835403942
https://pubmed.ncbi.nlm.nih.gov/PMC2895276
Volume 2008
WOSCitedRecordID wos000259736802052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYA9cCJZ9uFFk2lHgkkmWQexwqBKrVCK9RWe1tNZpx2pSpBuywSR_45diZJS8Wlt7xGk8RxbI_t7wP4SGLWteL2s6BsUnj6jJ3XPinqtAxOo8Wqw5n9qq-vzWxmpxtwOvbCIGJXfIZnvNnl8kPr17xUdl6UpLtGb8Km1ir2ao3rKeSaSNW7OrwvKbJRdswo5MzG0mU-lUyUzezQ5JWzjRqwn_r9sk9_Zqk9v_gxvYkll_3sDB-cMiobE7h3jCwvOaf_1lj-ZbSudv7vcXfh8E_3n5iOdm0PNrDZh53eXRX9z2BFhwZGiOHYPmyz7xqhnw_g8aat1qs7EYmCBMN5xD5J4ZogInDteomCY3JSqAfBrS4Cm9Byq8zCC7r8J4qx2FvwmjGNFZ-Cu-W_NM1L5k18wWWDvwVTjzJvx2qYqV0ewvery28Xn5Oe8SFZyNzeJa4y6DGri7oM0jtLhlMiKllrxq3H2muFVrtMliE1usqcKnxIK0MxX0GDUL6GraZt8C0ICsMyptOu0dSF8ql1PmRe50bRlq_MBA74jc9vI6jHvH_ZE_gwyHJOisbZE9dgu17Ns26JTNoin8CbKNtx8PBBTEA_k_p4AYN4Pz_TLH51YN4U8Ja5Vkcv384xbMcCFZXk8h1skWjwPbzy9yTL5QnpwcycdHrwBCJrAcw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkRPhbaULS8jcSQ0iR07PqKKqqjLalUV1Fvk2BNYqUqq3S5Sj_3nnckLinrhloctJ544M-OZ-T6ADyRmU2kuPwvaRsrTZ-y88ZGq4iw4gxbLFmd2amaz_OLCzjfg41gLg4ht8hl-4sM2lh8av-atskOV0drNzSN4nCmVxl211rijQsaJ1L2xw-eSfBttx5hCynwsbexTy0jbxA5lXilrqQH9qT_P-gBoEtvDox_zsy7psh-fAYRjxmVjCveWk-Uh8_TfLMu_1Nbx9v-98DPY-1P_J-ajZnsOG1jvwHZvsIr-d7CiSwMnxHBtB7bYeu3An3fh9qwp16tr0VEFCQb06ColhauD6KBr10sU7JXTkroRXOwisA4NF8ssvKDmP1GM6d6Cd42pr_gc3BX_p2lcUnDiFJc1XgomH2XmjtUwUrPcg-_HX86PTqKe8yFayNReR67M0WNSqSoL0jtLqlMialkZRq7HyhuN1rhEZiHOTZk4rXyIy5y8PkWdUL6Azbqp8SUIcsQSJtSuMK-U9rF1PiTepLmmI1_mE9jlGS-uOliPop_sCbwfZFnQUuP4iauxWa-KpN0kk1alE9jvZDt2Hj6ICZh7Uh8bMIz3_Tv14lcL500ub5YaffDw47yDpyfn36bF9Ovs9BVsdekqOkrla9gkMeEbeOJ_k1yXb9vVcAeX-wQr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Robust+motion+estimation+and+structure+recovery+from+endoscopic+image+sequences+with+an+Adaptive+Scale+Kernel+Consensus+estimator&rft.au=Wang%2C+Hanzi&rft.au=Mirota%2C+Daniel&rft.au=Ishii%2C+Masaru&rft.au=Hager%2C+Gregory+D.&rft.date=2008-06-23&rft.pub=IEEE&rft.isbn=9781424422425&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FCVPR.2008.4587687&rft_id=info%3Apmid%2F20607128&rft.externalDocID=4587687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon