Multiple Class Segmentation Using A Unified Framework over Mean-Shift Patches

Object-based segmentation is a challenging topic. Most of the previous algorithms focused on segmenting a single or a small set of objects. In this paper, the multiple class object-based segmentation is achieved using the appearance and bag of keypoints models integrated over mean-shift patches. We...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2007 IEEE Conference on Computer Vision and Pattern Recognition Ročník 2007; číslo 4270254; s. 1 - 8
Hlavní autori: Yang, Lin, Meer, Peter, Foran, David J.
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 16.07.2007
Predmet:
ISBN:9781424411795, 1424411793
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Object-based segmentation is a challenging topic. Most of the previous algorithms focused on segmenting a single or a small set of objects. In this paper, the multiple class object-based segmentation is achieved using the appearance and bag of keypoints models integrated over mean-shift patches. We also propose a novel affine invariant descriptor to model the spatial relationship of keypoints and apply the elliptical Fourier descriptor to describe the global shapes. The algorithm is computationally efficient and has been tested for three real datasets using less training samples. Our algorithm provides better results than other studies reported in the literature.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:9781424411795
1424411793
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2007.383229