Dual Attention-Based Federated Learning for Wireless Traffic Prediction

Wireless traffic prediction is essential for cellular networks to realize intelligent network operations, such as load-aware resource management and predictive control. Existing prediction approaches usually adopt centralized training architectures and require the transferring of huge amounts of tra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annual Joint Conference of the IEEE Computer and Communications Societies s. 1 - 10
Hlavní autoři: Zhang, Chuanting, Dang, Shuping, Shihada, Basem, Alouini, Mohamed-Slim
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 10.05.2021
Témata:
ISSN:2641-9874
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wireless traffic prediction is essential for cellular networks to realize intelligent network operations, such as load-aware resource management and predictive control. Existing prediction approaches usually adopt centralized training architectures and require the transferring of huge amounts of traffic data, which may raise delay and privacy concerns for certain scenarios. In this work, we propose a novel wireless traffic prediction framework named Dual Attention-Based Federated Learning (FedDA), by which a high-quality prediction model is trained collaboratively by multiple edge clients. To simultaneously capture the various wireless traffic patterns and keep raw data locally, FedDA first groups the clients into different clusters by using a small augmentation dataset. Then, a quasi-global model is trained and shared among clients as prior knowledge, aiming to solve the statistical heterogeneity challenge confronted with federated learning. To construct the global model, a dual attention scheme is further proposed by aggregating the intra-and inter-cluster models, instead of simply averaging the weights of local models. We conduct extensive experiments on two real-world wireless traffic datasets and results show that FedDA outperforms state-of-the-art methods. The average mean squared error performance gains on the two datasets are up to 10% and 30%, respectively.
AbstractList Wireless traffic prediction is essential for cellular networks to realize intelligent network operations, such as load-aware resource management and predictive control. Existing prediction approaches usually adopt centralized training architectures and require the transferring of huge amounts of traffic data, which may raise delay and privacy concerns for certain scenarios. In this work, we propose a novel wireless traffic prediction framework named Dual Attention-Based Federated Learning (FedDA), by which a high-quality prediction model is trained collaboratively by multiple edge clients. To simultaneously capture the various wireless traffic patterns and keep raw data locally, FedDA first groups the clients into different clusters by using a small augmentation dataset. Then, a quasi-global model is trained and shared among clients as prior knowledge, aiming to solve the statistical heterogeneity challenge confronted with federated learning. To construct the global model, a dual attention scheme is further proposed by aggregating the intra-and inter-cluster models, instead of simply averaging the weights of local models. We conduct extensive experiments on two real-world wireless traffic datasets and results show that FedDA outperforms state-of-the-art methods. The average mean squared error performance gains on the two datasets are up to 10% and 30%, respectively.
Author Shihada, Basem
Alouini, Mohamed-Slim
Dang, Shuping
Zhang, Chuanting
Author_xml – sequence: 1
  givenname: Chuanting
  surname: Zhang
  fullname: Zhang, Chuanting
  email: chuanting.zhang@kaust.edu.sa
  organization: King Abdullah University of Science and Technology,Computer, Electrical and Mathematical Science and Engineering Division,Thuwal,Saudi Arabia
– sequence: 2
  givenname: Shuping
  surname: Dang
  fullname: Dang, Shuping
  email: shuping.dang@kaust.edu.sa
  organization: King Abdullah University of Science and Technology,Computer, Electrical and Mathematical Science and Engineering Division,Thuwal,Saudi Arabia
– sequence: 3
  givenname: Basem
  surname: Shihada
  fullname: Shihada, Basem
  email: basem.shihada@kaust.edu.sa
  organization: King Abdullah University of Science and Technology,Computer, Electrical and Mathematical Science and Engineering Division,Thuwal,Saudi Arabia
– sequence: 4
  givenname: Mohamed-Slim
  surname: Alouini
  fullname: Alouini, Mohamed-Slim
  email: slim.alouini@kaust.edu.sa
  organization: King Abdullah University of Science and Technology,Computer, Electrical and Mathematical Science and Engineering Division,Thuwal,Saudi Arabia
BookMark eNotj8FOwzAQRA0Cibb0C7iED0jw2o5jH0sgpVIgHIo4Vou9QUYhQU448PcE0bnMXN5oZsnO-qEnxq6BZwDc3uyeqqZsHpWwBjLBBWRWmVnyhK1tYUDrXHEpcnHKFkIrSK0p1AVbjuMH59wUQi_Y9u4bu2QzTdRPYejTWxzJJxV5ijjNqSaMfejfk3aIyWuI1NE4JvuIbRtc8hzJB_cHXrLzFruR1kdfsZfqfl8-pHWz3ZWbOg1S8CnN5wVgBSpuAazThrs3hx6K3IIAJQ1qlYMH56wWigAlWgTV5sr71otCrtjVf28gosNXDJ8Yfw7H3_IX3BtOvQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/INFOCOM42981.2021.9488883
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665403252
166540325X
EISSN 2641-9874
EndPage 10
ExternalDocumentID 9488883
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i320t-5874192a409119c680cbcad1759121438a6451d1cc9624e1a3a9a14f54ddfd273
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702210400217&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:27:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i320t-5874192a409119c680cbcad1759121438a6451d1cc9624e1a3a9a14f54ddfd273
OpenAccessLink http://hdl.handle.net/10754/670631
PageCount 10
ParticipantIDs ieee_primary_9488883
PublicationCentury 2000
PublicationDate 2021-05-10
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-10
  day: 10
PublicationDecade 2020
PublicationTitle Annual Joint Conference of the IEEE Computer and Communications Societies
PublicationTitleAbbrev INFOCOM
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008726
Score 2.5299568
Snippet Wireless traffic prediction is essential for cellular networks to realize intelligent network operations, such as load-aware resource management and predictive...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Collaborative work
Computational modeling
deep neural networks
federated learning
Performance gain
Predictive models
Traffic control
Training
Wireless communication
wireless traffic prediction
Title Dual Attention-Based Federated Learning for Wireless Traffic Prediction
URI https://ieeexplore.ieee.org/document/9488883
WOSCitedRecordID wos000702210400217&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7aIqIXH634ZgWPpu1uNsnu0VfUg20PCr2Vzc5GCqWVmvr7nU1CVfDiLSxsApPlm_l2Zr4BuIxiY6XOwwAdEkHRoQkMYWJgXKTQGC1dWA2bSAYDNR7rUQOu1r0wzrmy-Mx1_WOZy8eFXfmrsp6m06ZU2IRmkiRVr9YadVUi4k24qDU0e0-DdHg7fCa0VZ4FCt6tN_-aolI6kXTnf5_fhc53Nx4brf3MHjTcfB-2fwgJtuHhbmVm7LooquLF4IZ8E7LUC0VQLImsVlF9YxSiMl_wOiOAY-SnvIAEvdxna_zGDrym9y-3j0E9IiGYhqJfBJFKfBrXEEvjXNtY9W1mDVJMoLnwk81NLCOO3FodC-m4CY02XOaRRMyRQpcDaM0Xc3cITIQSs8z2udMoBRI1znIkCBCSKImL8Qja3iST90oFY1Jb4_jv5RPY8lYPSp3TU2gVy5U7gw37WUw_luflr_sCbS-Z9w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gGj9e_ADjtzXx0QHtutE-KjohwuABE95I6XWGhIDB4d9vuy2oiS--LUvaLNfmd_fb3f0O4DYIleYy8T00aAmK9JWnLCZ6ygQClZLc-PmwiWYci9FIDkpwt-6FMcZkxWem5h6zXD4u9Mr9KqtLe9uE8DdgM-Cc0bxba427osnCbbgpVDTrnTjqt_o9i7fC8UBGa8XyX3NUMjcS7f_vAw6g-t2PRwZrT3MIJTM_gr0fUoIVeH5cqRm5T9O8fNF7sN4JSeSkImw0iaTQUX0jNkglruR1ZiGOWE_lJCTs5i5f4xZW4TV6GrbaXjEkwZv6rJF6gWi6RK6yPI1SqUPR0BOt0EYFkjI321yFPKBItZYh44YqX0lFeRJwxARt8HIM5flibk6AMJ_jZKIb1EjkDC05niRoQYBxS0pMiKdQcSYZv-c6GOPCGmd_v76Gnfaw1x13O_HLOey6E_Ay1dMLKKfLlbmELf2ZTj-WV9kxfgGhcp0-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+Joint+Conference+of+the+IEEE+Computer+and+Communications+Societies&rft.atitle=Dual+Attention-Based+Federated+Learning+for+Wireless+Traffic+Prediction&rft.au=Zhang%2C+Chuanting&rft.au=Dang%2C+Shuping&rft.au=Shihada%2C+Basem&rft.au=Alouini%2C+Mohamed-Slim&rft.date=2021-05-10&rft.pub=IEEE&rft.eissn=2641-9874&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FINFOCOM42981.2021.9488883&rft.externalDocID=9488883