Estimation for zero-inflated over-dispersed count data model with missing response

In this paper, we develop estimation procedure for the parameters of a zero‐inflated over‐dispersed/under‐dispersed count model in the presence of missing responses. In particular, we deal with a zero‐inflated extended negative binomial model in the presence of missing responses. A weighted expectat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine Jg. 35; H. 30; S. 5603 - 5624
Hauptverfasser: Mian, Rajibul, Paul, Sudhir
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 30.12.2016
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0277-6715, 1097-0258
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we develop estimation procedure for the parameters of a zero‐inflated over‐dispersed/under‐dispersed count model in the presence of missing responses. In particular, we deal with a zero‐inflated extended negative binomial model in the presence of missing responses. A weighted expectation maximization algorithm is used for the maximum likelihood estimation of the parameters involved. Some simulations are conducted to study the properties of the estimators. Robustness of the procedure is shown when count data follow other over‐dispersed models, such as the log‐normal mixture of the Poisson distribution or even from a zero‐inflated Poisson model. An illustrative example and a discussion leading to some conclusions are given. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList In this paper, we develop estimation procedure for the parameters of a zero-inflated over-dispersed/under-dispersed count model in the presence of missing responses. In particular, we deal with a zero-inflated extended negative binomial model in the presence of missing responses. A weighted expectation maximization algorithm is used for the maximum likelihood estimation of the parameters involved. Some simulations are conducted to study the properties of the estimators. Robustness of the procedure is shown when count data follow other over-dispersed models, such as the log-normal mixture of the Poisson distribution or even from a zero-inflated Poisson model. An illustrative example and a discussion leading to some conclusions are given. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we develop estimation procedure for the parameters of a zero-inflated over-dispersed/under-dispersed count model in the presence of missing responses. In particular, we deal with a zero-inflated extended negative binomial model in the presence of missing responses. A weighted expectation maximization algorithm is used for the maximum likelihood estimation of the parameters involved. Some simulations are conducted to study the properties of the estimators. Robustness of the procedure is shown when count data follow other over-dispersed models, such as the log-normal mixture of the Poisson distribution or even from a zero-inflated Poisson model. An illustrative example and a discussion leading to some conclusions are given.
Author Mian, Rajibul
Paul, Sudhir
Author_xml – sequence: 1
  givenname: Rajibul
  surname: Mian
  fullname: Mian, Rajibul
  organization: Department of Mathematics and Statistics, University of Windsor, ON N9B 3P4, Windsor, Canada
– sequence: 2
  givenname: Sudhir
  surname: Paul
  fullname: Paul, Sudhir
  email: smjp@uwindsor.ca, Correspondence to: Sudhir Paul, Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4, Canada., smjp@uwindsor.ca
  organization: Department of Mathematics and Statistics, University of Windsor, ON N9B 3P4, Windsor, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27582395$$D View this record in MEDLINE/PubMed
BookMark eNpd0V1PFDEUBuDGQGQBE3-BmcQbbwb6Md0zvTQEEFnQ8KGXTXd6qsWZdmlnRPj1dsOHiVcnTZ-cnLzvNtkIMSAhbxndY5Ty_eyHPaCgXpEZowpqymW7QWaUA9RzYHKLbOd8QyljksNrssVBtlwoOSMXh3n0gxl9DJWLqXrAFGsfXG9GtFX8jam2Pq8w5fLs4hTGyprRVEO02Fd3fvxZDT5nH35UCfMqhoy7ZNOZPuObp7lDro8Orw4-1YsvxycHHxe1F0yqupVuDtA5kLwzyMvFwlrXIYrGKtMAtcY4bpQCXKqmE7RbStc5xxrWWoCl2CEfHveuUrydMI-6XNJh35uAccqatY1saStlU-j7_-hNnFIo1xUlKZQshCzq3ZOalgNavUolmXSvn9MqoH4Ed77H-5d_RvW6BV1a0OsW9OXJ2Xr-8z6P-OfFm_RLz0GA1N_Pj_Vn9e2rPDoVeiH-ArbQiv8
CODEN SMEDDA
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Dec 30, 2016
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Dec 30, 2016
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.7079
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 5624
ExternalDocumentID 4283539711
27582395
SIM7079
ark_67375_WNG_J9VP5FK3_L
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-i3159-85f677cf752cae22583ddfcee34d9a470daaf2a997eb94c30cb5fcff1418d77b3
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389328900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
IngestDate Fri Jul 11 12:29:48 EDT 2025
Tue Oct 07 06:18:40 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Wed Jan 22 16:46:41 EST 2025
Tue Sep 09 05:32:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords regression model
over dispersion
EM algorithm
count data
zero inflation
Language English
License Copyright © 2016 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3159-85f677cf752cae22583ddfcee34d9a470daaf2a997eb94c30cb5fcff1418d77b3
Notes Supporting info item
ark:/67375/WNG-J9VP5FK3-L
ArticleID:SIM7079
istex:475F564FA1B7A14D091C7F99727CC00DC8EE8B17
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27582395
PQID 1850723935
PQPubID 48361
PageCount 22
ParticipantIDs proquest_miscellaneous_1845808554
proquest_journals_1850723935
pubmed_primary_27582395
wiley_primary_10_1002_sim_7079_SIM7079
istex_primary_ark_67375_WNG_J9VP5FK3_L
PublicationCentury 2000
PublicationDate 2016-12-30
30 December 2016
2016-Dec-30
20161230
PublicationDateYYYYMMDD 2016-12-30
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Ibrahim JG, Chen MH, Lipsitz SR. Monte Carlo EM for missing covariates in parametric regression models. Biometrics 1999; 55:591-596.
Paul SR, Plackett RL. Inference sensitivity for Poisson mixtures. Biometrika 1978; 65:591-602.
Ibrahim JG, Chen MH, Lipsitz SR. Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable. Biometrika 2001; 88:551-556.
Paul SR, Banergee T. Analysis of two-way layout of count data involving multiple counts in each cell. Journal of the American Statistical Association 1998; 93:1419-1429.
Anderson TW, Taylor JB. Strong consistency of least squares estimates in normal linear regression. The Annals of Statistics 1976; 4:788-790.
Prentice RL. Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. Journal of the American Statistical Association 1986; 81:321-327.
Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. Journal of the American Statistical Association 1997; 92:179-191.
Rubin DB. Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977; 72:538-543.
Sahu SK, Roberts GO. On convergence of the EM algorithm and the Gibbs sampler. Statistics and Computing 1999; 9:55-64.
Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996; 83:916-922.
Ibrahim JG, Chen MH, Lipsitz SR, Herring AH. Missing-data methods for generalized linear models. Journal of the American Statistical Association 2005; 100:332-346.
Casella G, George EL. Explaining the Gibbs sampler. The American Statistician 1992; 46:167-174.
Maiti T, Pradhan V. Bias reduction and a solution for separation of logistic regression with missing covariates. Biometrics 2009; 65:1262-1269.
Ibrahim JG, Lipsitz SR. Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. Biometrics 1996; 52:1071-1078.
Lawless JF. Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics 1987; 15:209-225.
Cameron AC, Trivedi PK. Regression Analysis of Count Data. Cambridge University Press: New York, 2013.
Geweke J. Inference in the inequality constrained normal linear regression model. Journal of Applied Econometrics 1986; 1:117-141.
Deng D, Paul SR. Score tests for zero inflation and over dispersion in generalized linear models. Statistica Sinica 2005; 15:257-276.
Efron B, Hinkley DV. Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 1978; 65:457-487.
Sinha S, Maiti T. Analysis of matched case-control data in presence of nonignorable missing exposure. Biometrics 2007; 64:106-114.
Ibrahim JG. Incomplete data in generalized linear model. Journal of the American Statistical Association 1990; 85:765-769.
Dempster AP, Larid NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 1977; 39:1-38.
Jiang X, Paul SR. Analysis of covariance of zero-inflated paired count data using a zero-inflated bivariate Poisson regression model. Calcutta Statistical Bulletin (Special Volume) 2009; 61:113-124.
Little RJA, Rubin DB. (1987, 2002, 2014). Statistical Analysis with Missing Data (2nd ed). Wiley: New York.
Zhang CH, Huang J. The sparsity and bias of the Lasso selection in high-dimensional linear regression. The Annals of Statistics 2008; 36:1567-1594.
Bohning D, Dietz E, Schlattmann P, Mendonca L, Kirchner U. The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society A 1999; 162:195-209.
Chen J, Hubbard S, Rubin Y. Estimating the hydraulic conductivity at the South Oyster site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model. Water Resources Research 2001; 37:1603-1613.
Deng D, Paul SR. Score tests for zero inflation in generalized linear models. The Canadian Journal of Statistics 2000; 87:451-457.
Barnwal RK, Paul SR. Analysis of one-way layout of count data with negative binomial variation. Biometrika 1988; 75:215-22.
Piegorsch WW. Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 1990; 46:863-867.
Kelly BC. Some aspects of measurement error in linear regression of astronomical data. The Astrophysical Journal 2007; 665:1489-1506.
Dean CB. Testing for overdispersion in Poisson and binomial regression models. Journal of the American Statistical Association 1992; 87:451-457.
2007; 665
2009; 65
2009; 61
2000; 87
2008; 36
1999; 162
1996; 52
1988; 75
2001; 88
1976; 4
1987; 15
1999; 9
1990; 85
1986; 1
1986; 81
1990; 46
1997; 92
2005; 100
1978; 65
1977; 39
1996; 83
1977; 72
1999; 55
2001; 37
1992; 46
1998; 93
2013
2005; 15
2007; 64
1992; 87
References_xml – reference: Barnwal RK, Paul SR. Analysis of one-way layout of count data with negative binomial variation. Biometrika 1988; 75:215-22.
– reference: Cameron AC, Trivedi PK. Regression Analysis of Count Data. Cambridge University Press: New York, 2013.
– reference: Zhang CH, Huang J. The sparsity and bias of the Lasso selection in high-dimensional linear regression. The Annals of Statistics 2008; 36:1567-1594.
– reference: Rubin DB. Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977; 72:538-543.
– reference: Prentice RL. Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. Journal of the American Statistical Association 1986; 81:321-327.
– reference: Sahu SK, Roberts GO. On convergence of the EM algorithm and the Gibbs sampler. Statistics and Computing 1999; 9:55-64.
– reference: Bohning D, Dietz E, Schlattmann P, Mendonca L, Kirchner U. The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society A 1999; 162:195-209.
– reference: Ibrahim JG. Incomplete data in generalized linear model. Journal of the American Statistical Association 1990; 85:765-769.
– reference: Lawless JF. Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics 1987; 15:209-225.
– reference: Anderson TW, Taylor JB. Strong consistency of least squares estimates in normal linear regression. The Annals of Statistics 1976; 4:788-790.
– reference: Ibrahim JG, Chen MH, Lipsitz SR, Herring AH. Missing-data methods for generalized linear models. Journal of the American Statistical Association 2005; 100:332-346.
– reference: Deng D, Paul SR. Score tests for zero inflation in generalized linear models. The Canadian Journal of Statistics 2000; 87:451-457.
– reference: Deng D, Paul SR. Score tests for zero inflation and over dispersion in generalized linear models. Statistica Sinica 2005; 15:257-276.
– reference: Dempster AP, Larid NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 1977; 39:1-38.
– reference: Maiti T, Pradhan V. Bias reduction and a solution for separation of logistic regression with missing covariates. Biometrics 2009; 65:1262-1269.
– reference: Paul SR, Banergee T. Analysis of two-way layout of count data involving multiple counts in each cell. Journal of the American Statistical Association 1998; 93:1419-1429.
– reference: Geweke J. Inference in the inequality constrained normal linear regression model. Journal of Applied Econometrics 1986; 1:117-141.
– reference: Paul SR, Plackett RL. Inference sensitivity for Poisson mixtures. Biometrika 1978; 65:591-602.
– reference: Little RJA, Rubin DB. (1987, 2002, 2014). Statistical Analysis with Missing Data (2nd ed). Wiley: New York.
– reference: Jiang X, Paul SR. Analysis of covariance of zero-inflated paired count data using a zero-inflated bivariate Poisson regression model. Calcutta Statistical Bulletin (Special Volume) 2009; 61:113-124.
– reference: Dean CB. Testing for overdispersion in Poisson and binomial regression models. Journal of the American Statistical Association 1992; 87:451-457.
– reference: Ibrahim JG, Chen MH, Lipsitz SR. Monte Carlo EM for missing covariates in parametric regression models. Biometrics 1999; 55:591-596.
– reference: Ibrahim JG, Chen MH, Lipsitz SR. Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable. Biometrika 2001; 88:551-556.
– reference: Kelly BC. Some aspects of measurement error in linear regression of astronomical data. The Astrophysical Journal 2007; 665:1489-1506.
– reference: Casella G, George EL. Explaining the Gibbs sampler. The American Statistician 1992; 46:167-174.
– reference: Ibrahim JG, Lipsitz SR. Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. Biometrics 1996; 52:1071-1078.
– reference: Sinha S, Maiti T. Analysis of matched case-control data in presence of nonignorable missing exposure. Biometrics 2007; 64:106-114.
– reference: Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. Journal of the American Statistical Association 1997; 92:179-191.
– reference: Chen J, Hubbard S, Rubin Y. Estimating the hydraulic conductivity at the South Oyster site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model. Water Resources Research 2001; 37:1603-1613.
– reference: Efron B, Hinkley DV. Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 1978; 65:457-487.
– reference: Piegorsch WW. Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 1990; 46:863-867.
– reference: Lipsitz SR, Ibrahim JG. A conditional model for incomplete covariates in parametric regression models. Biometrika 1996; 83:916-922.
– volume: 65
  start-page: 591
  year: 1978
  end-page: 602
  article-title: Inference sensitivity for Poisson mixtures
  publication-title: Biometrika
– volume: 87
  start-page: 451
  year: 1992
  end-page: 457
  article-title: Testing for overdispersion in Poisson and binomial regression models
  publication-title: Journal of the American Statistical Association
– volume: 65
  start-page: 457
  year: 1978
  end-page: 487
  article-title: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information
  publication-title: Biometrika
– volume: 162
  start-page: 195
  year: 1999
  end-page: 209
  article-title: The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology
  publication-title: Journal of the Royal Statistical Society A
– volume: 52
  start-page: 1071
  year: 1996
  end-page: 1078
  article-title: Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable
  publication-title: Biometrics
– volume: 4
  start-page: 788
  year: 1976
  end-page: 790
  article-title: Strong consistency of least squares estimates in normal linear regression
  publication-title: The Annals of Statistics
– volume: 100
  start-page: 332
  year: 2005
  end-page: 346
  article-title: Missing‐data methods for generalized linear models
  publication-title: Journal of the American Statistical Association
– volume: 46
  start-page: 167
  year: 1992
  end-page: 174
  article-title: Explaining the Gibbs sampler
  publication-title: The American Statistician
– volume: 36
  start-page: 1567
  year: 2008
  end-page: 1594
  article-title: The sparsity and bias of the Lasso selection in high‐dimensional linear regression
  publication-title: The Annals of Statistics
– volume: 65
  start-page: 1262
  year: 2009
  end-page: 1269
  article-title: Bias reduction and a solution for separation of logistic regression with missing covariates
  publication-title: Biometrics
– volume: 9
  start-page: 55
  year: 1999
  end-page: 64
  article-title: On convergence of the EM algorithm and the Gibbs sampler
  publication-title: Statistics and Computing
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society B
– volume: 1
  start-page: 117
  year: 1986
  end-page: 141
  article-title: Inference in the inequality constrained normal linear regression model
  publication-title: Journal of Applied Econometrics
– volume: 85
  start-page: 765
  year: 1990
  end-page: 769
  article-title: Incomplete data in generalized linear model
  publication-title: Journal of the American Statistical Association
– volume: 87
  start-page: 451
  year: 2000
  end-page: 457
  article-title: Score tests for zero inflation in generalized linear models
  publication-title: The Canadian Journal of Statistics
– volume: 15
  start-page: 257
  year: 2005
  end-page: 276
  article-title: Score tests for zero inflation and over dispersion in generalized linear models
  publication-title: Statistica Sinica
– volume: 64
  start-page: 106
  year: 2007
  end-page: 114
  article-title: Analysis of matched case–control data in presence of nonignorable missing exposure
  publication-title: Biometrics
– volume: 81
  start-page: 321
  year: 1986
  end-page: 327
  article-title: Binary regression using an extended beta‐binomial distribution, with discussion of correlation induced by covariate measurement errors
  publication-title: Journal of the American Statistical Association
– volume: 75
  start-page: 215
  year: 1988
  end-page: 22
  article-title: Analysis of one‐way layout of count data with negative binomial variation
  publication-title: Biometrika
– volume: 61
  start-page: 113
  year: 2009
  end-page: 124
  article-title: Analysis of covariance of zero‐inflated paired count data using a zero‐inflated bivariate Poisson regression model
  publication-title: Calcutta Statistical Bulletin (Special Volume)
– volume: 88
  start-page: 551
  year: 2001
  end-page: 556
  article-title: Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable
  publication-title: Biometrika
– volume: 93
  start-page: 1419
  year: 1998
  end-page: 1429
  article-title: Analysis of two‐way layout of count data involving multiple counts in each cell
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 209
  year: 1987
  end-page: 225
  article-title: Negative binomial and mixed Poisson regression
  publication-title: The Canadian Journal of Statistics
– volume: 92
  start-page: 179
  year: 1997
  end-page: 191
  article-title: Bayesian model averaging for linear regression models
  publication-title: Journal of the American Statistical Association
– volume: 37
  start-page: 1603
  year: 2001
  end-page: 1613
  article-title: Estimating the hydraulic conductivity at the South Oyster site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model
  publication-title: Water Resources Research
– volume: 83
  start-page: 916
  year: 1996
  end-page: 922
  article-title: A conditional model for incomplete covariates in parametric regression models
  publication-title: Biometrika
– volume: 72
  start-page: 538
  year: 1977
  end-page: 543
  article-title: Formalizing subjective notions about the effect of nonrespondents in sample surveys
  publication-title: Journal of the American Statistical Association
– volume: 46
  start-page: 863
  year: 1990
  end-page: 867
  article-title: Maximum likelihood estimation for the negative binomial dispersion parameter
  publication-title: Biometrics
– volume: 55
  start-page: 591
  year: 1999
  end-page: 596
  article-title: Monte Carlo EM for missing covariates in parametric regression models
  publication-title: Biometrics
– volume: 665
  start-page: 1489
  year: 2007
  end-page: 1506
  article-title: Some aspects of measurement error in linear regression of astronomical data
  publication-title: The Astrophysical Journal
– year: 2013
SSID ssj0011527
Score 2.216102
Snippet In this paper, we develop estimation procedure for the parameters of a zero‐inflated over‐dispersed/under‐dispersed count model in the presence of missing...
In this paper, we develop estimation procedure for the parameters of a zero-inflated over-dispersed/under-dispersed count model in the presence of missing...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 5603
SubjectTerms Algorithms
count data
EM algorithm
Estimating techniques
Humans
Likelihood Functions
Medical statistics
Models, Statistical
over dispersion
Poisson Distribution
regression model
Simulation
zero inflation
Title Estimation for zero-inflated over-dispersed count data model with missing response
URI https://api.istex.fr/ark:/67375/WNG-J9VP5FK3-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7079
https://www.ncbi.nlm.nih.gov/pubmed/27582395
https://www.proquest.com/docview/1850723935
https://www.proquest.com/docview/1845808554
Volume 35
WOSCitedRecordID wos000389328900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB3RLUKVEJcFykKpjIT6FppN7Dh-RNDltl1VQMu-WY4v0gq6i7IUIZ74BL6RL2HGzgYh8YDEU262cjnj-Hg8PgPwyOTGBJWLzOYiZNxbnzWWIyCOVqJXvgohqutP5WxWz-fqpIuqpLUwSR-id7hRy4j_a2rgplkf_hYNXS_OH5O82xZsF2i2fADbz95MTqf9HMImYStNUlZyLDbSs3lxuKmLjJQ-5te_0cs_2WrsbibX_-dBb8C1jmSyJ8kqbsIlvxzCleNuGn0IV5OzjqU1SEPYIcqZFJtvwdkR7qQFjQwZLfvm29XP7z_QEj8iL3WMYj7x2C1IY3yNJ2K6CUahpizm1WHk22VoP-SGYG0KwvW34XRy9O7pi6zLvpAtyjH5BkWoJIkWicIaj82-Lp0L2KeW3CnDZe4Q5cIoJX2juC1z24hgQxjzce2kbMo7MFiulv4usMb4Csd5Dtma56WtlGl4KJQ3slZYsBrBQYRBf0oKG9q0HyjgTAr9fvZcv1JnJ2LyutTTEextcNJdW1trZBy5jEpuI3jYX8a3pKkPs_SrCyrDRR1D8kawm_Dtb1bgkAmrY-2DCGN_ISk6FxoB1ASgfvvymLb3_rXgfdhBfhXzHJX5Hgw-txf-AVy2XxDSdh-25Lze76z2F7F58tQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2VLYJKFZdtgYUCRkJ9C80mdhyLJwRdWppdVdCWvllOYksrYBdlKUI89RP4Rr6EGTsJQuIBiafcbOVyxvHxeHwG4KmJjXEqFlEVCxdxW9morDgCUtNK9Mxmznl1_ULOZvn5uTpeg-fdWpigD9E73Khl-P81NXBySO_9Vg1dzT89I323K7DO0YrEANZfvZ2cFv0kQpexlWYpMzkWnfZsnOx1dZGS0tf89jd--Sdd9f3N5OZ_PektuNHSTPYi2MVtWLOLIVybthPpQ9gM7joWViENYYNIZ9Bs3oKzfdwJSxoZclr23TbLn5c_0BY_IjOtGUV94nE9J5XxFZ7wCScYBZsyn1mHkXeXoQWRI4I1IQzXbsPpZP_k5UHU5l-I5umYvIPCZZJki0RSGYsNP0_r2mGvmvJaGS7jGnFOjFLSlopXaVyVwlXOjfk4r6Us0zswWCwX9h6w0tgMR3o18jXL0ypTpuQuUdbIXGHBbAS7Hgf9OWhsaNN8oJAzKfT72Wv9Rp0di8lRqosR7HRA6ba1rTRyjlh6LbcRPOkv41vS5IdZ2OUFleEi90F5I7gbAO5vluCgCatj7V2PY38haDonGgHUBKB-dzil7f1_LfgYrh-cTAtdHM6OHsAGsi2f9SiNd2DwpbmwD-Fq9RXhbR61xvsLdyr13A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2VFlWVEJcFykIBI6G-hWYTO16LJ0QbKN2uVkBL3ywntqUVdLfKUoR44hP4Rr6EGTsJQuIBiafcbOVyPPHxeHwG4KlJjfEqFUmdCp9wV7ukqjkCYmkleuEK74O6_kROp-OzMzVbg-fdWpioD9E73Mgywv-aDNxdWL_3WzV0NT9_RvpuV2CDC1WgVW7svy1PJv0kQpexlWYpCzkSnfZsmu11dZGS0tf8-jd--SddDf1NeeO_nvQmXG9pJnsR28UtWHOLAWwetxPpA7gW3XUsrkIawBaRzqjZfBtOD3AnLmlkyGnZN9csf37_gW3xEzJTyyjqE4_tnFTGV3giJJxgFGzKQmYdRt5dhi2IHBGsiWG47g6clAfvX75O2vwLyTwfkXdQ-EKSbJHIauPQ8Me5tR571ZxbZbhMLeKcGaWkqxSv87SuhK-9H_HR2EpZ5XdhfbFcuHvAKuMKHOlZ5GuO53WhTMV9ppyRY4UFiyHsBhz0RdTY0Kb5SCFnUugP01f6jTqdifIo15Mh7HRA6dbaVho5RyqDltsQnvSX8S1p8sMs3PKSynAxDkF5Q9iOAPc3y3DQhNWx9m7Asb8QNZ0zjQBqAlC_Ozym7f1_LfgYNmf7pZ4cTo8ewBaSrZD0KE93YP1zc-kewtX6C6LbPGrb7i8TTfVX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+for+zero-inflated+over-dispersed+count+data+model+with+missing+response&rft.jtitle=Statistics+in+medicine&rft.au=Mian%2C+Rajibul&rft.au=Paul%2C+Sudhir&rft.date=2016-12-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=30&rft.spage=5603&rft_id=info:doi/10.1002%2Fsim.7079&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4283539711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon