Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting
White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended ou...
Gespeichert in:
| Veröffentlicht in: | 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Jg. 2023; S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2023
|
| Schlagworte: | |
| ISSN: | 2694-0604, 2694-0604 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. |
|---|---|
| AbstractList | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. |
| Author | Chattopadhyay, Tamoghna Feng, Yixue Chandio, Bramsh Q. Thompson, Paul M. Thomopoulos, Sophia I. |
| Author_xml | – sequence: 1 givenname: Yixue surname: Feng fullname: Feng, Yixue organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States – sequence: 2 givenname: Bramsh Q. surname: Chandio fullname: Chandio, Bramsh Q. organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States – sequence: 3 givenname: Sophia I. surname: Thomopoulos fullname: Thomopoulos, Sophia I. organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States – sequence: 4 givenname: Tamoghna surname: Chattopadhyay fullname: Chattopadhyay, Tamoghna organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States – sequence: 5 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38083771$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkctOwzAURA0CQSn9AwReskm5jp3YXtLylIpYtLCtnOQGLFK72I5Q_54iHmI1I83RLGaOyJ7zDgk5YzBmDPTF9cNkKkAqOc4h52MGXACA3iEjLbXiBfBcCMl2ySAvtcigBLH3zx-SUYy2goIXotA5PyCHXIHiUrIBeXs2wZpkvTMdveyTR1f7BkOkrQ_0Fh2Gbepe6Hzj0ismW9NFMHXyL8GsXzfZxERs6KR3TYd0gat1ZxJGah01dOY_siuTDJ1j-uo4Jvut6SKOfnRInm6uF9O7bPZ4ez-9nGWWg05ZW0vBuFFNhdpIxLrSEjWwVmqEFkEBNKIWDMqqMLxqpOIalFKoylKyUvEhOf_uXQf_3mNMy5WNNXadcej7uMw15JpzpsotevqD9tUKm-U62JUJm-XvQFvg5BuwiPgX_17APwGBg3hF |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK ESBDL RIE RIO CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/EMBC40787.2023.10340009 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350324471 |
| EISSN | 2694-0604 |
| EndPage | 6 |
| ExternalDocumentID | 38083771 10340009 |
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Health funderid: 10.13039/100018696 – fundername: NIA NIH HHS grantid: RF1 AG057892 |
| GroupedDBID | 6IE 6IH 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO ESBDL IEGSK IJVOP OCL RIE RIL RIO AAWTH CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133788300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2694-0604 |
| IngestDate | Thu Oct 02 06:41:17 EDT 2025 Wed Feb 19 02:08:05 EST 2025 Wed Jun 26 19:38:37 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10340009 |
| PMID | 38083771 |
| PQID | 2902933186 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | pubmed_primary_38083771 ieee_primary_10340009 proquest_miscellaneous_2902933186 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) |
| PublicationTitleAbbrev | EMBC |
| PublicationTitleAlternate | Annu Int Conf IEEE Eng Med Biol Soc |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib053545923 ssib042469959 ssib061542107 |
| Score | 1.8471969 |
| Snippet | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are... |
| SourceID | proquest pubmed ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adult Benchmarking Brain - diagnostic imaging Estimation Humans Image Processing, Computer-Assisted - methods Kernel Measurement Shape Sociology Training White matter White Matter - diagnostic imaging |
| Title | Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting |
| URI | https://ieeexplore.ieee.org/document/10340009 https://www.ncbi.nlm.nih.gov/pubmed/38083771 https://www.proquest.com/docview/2902933186 |
| Volume | 2023 |
| WOSCitedRecordID | wos001133788300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUAIdQJEAXKR2UkVpe0cWNnpEDFUKpKFNStspOLVAFJ1SYg_j13TgIsDCxRljiRffG9O997x9ilZ2UMUaKFNRqElDIR2kZKWHSHMjC9QCeua8lIjcd6NgsnFVndcWEAwBWfQYdu3Vl-nEUFpcrwD_el5-h6m0qpkqxVG4_sYaD3Syil7yM2QPRS1XR1vfDq7mFwQ8dWqkM9wzv1aA2242tEIsrR6Omtf6NN53WGu__83j3W_OHv8cm3Z9pnG5AesJdnDIur1B-_LvKMJCypjJkjbuWl_DTVQPPHzxRRIRoUnxKFqtK0FgP0dzEfFKTKwKfwtnwlmMoXKTd8lH2IW5Mb_giujrrJnoZ305t7UbVaEAvfC3ORRIgsfKNjC6FRAJENFSBUSFQIXgIEK2MZSYwfbd_4NlaIq3B_0qCDACMu7R-yrTRL4ZhxqQhDqCCQtk86qCayMXRNL-n7cdiFbos1aabmy1JNY15PUotd1JM-RxOncwuTQlas573QQ1CCm0_QYkflanw_Xa_cyR-jnrIGLXaZNDljW_mqgHO2Hb3ni_WqjXY003gdTx7azpq-AC6NxTA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUQRbAniljoFlqMxNVLPpzYOXb5EBVhhcSCuEV2MpFWtMkKklb9951xEuiFQ2-5xInGY88be94bxk48KwvISy2s0SCklKXQNlfCYjiUsQliXbquJamaz_XjY3Lbk9UdFwYAXPEZTOnR3eUXdd7SURmu8FB6jq73IZIy8Du61uA-MsBU7x-plChEdID4pa_q8r3k9OJmdkYXV2pKXcOnw3gjthlqxCLKEenpu-_jTRd3Lrf_848_svEbg4_fvsamHbYG1S57esDEuD_849_apiYRSypk5ohceSdATVXQ_O5PhbgQXYoviETVq1qLGUa8gs9a0mXgC_i5-kFAlS8rbnha_xbnpjH8Dlwl9ZjdX14szq5E32xBLEMvaUSZI7YIjS4sJEYB5DZRgGChVAl4JRCwLGQuMYO0kQltoRBZ4Q6lQccx5lw63GPrVV3BJ8alIhSh4ljaiJRQTW4L8E1QRmGR-OBP2Jgsla06PY1sMNKEHQ9Gz9DJ6ebCVFC3L1mQeAhLcPuJJ2y_m43Xt4eZ-_zOqEds62pxk2bp9_n1ARvRxHdHKIdsvXlu4QvbyH81y5fnr86b_gJSFsaD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Variational+Autoencoders+for+Generating+Synthetic+Tractography-Based+Bundle+Templates+in+a+Low-Data+Setting&rft.au=Feng%2C+Yixue&rft.au=Chandio%2C+Bramsh+Q.&rft.au=Thomopoulos%2C+Sophia+I.&rft.au=Chattopadhyay%2C+Tamoghna&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FEMBC40787.2023.10340009&rft_id=info%3Apmid%2F38083771&rft.externalDocID=10340009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon |