Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting

White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Jg. 2023; S. 1 - 6
Hauptverfasser: Feng, Yixue, Chandio, Bramsh Q., Thomopoulos, Sophia I., Chattopadhyay, Tamoghna, Thompson, Paul M.
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2023
Schlagworte:
ISSN:2694-0604, 2694-0604
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
AbstractList White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
Author Chattopadhyay, Tamoghna
Feng, Yixue
Chandio, Bramsh Q.
Thompson, Paul M.
Thomopoulos, Sophia I.
Author_xml – sequence: 1
  givenname: Yixue
  surname: Feng
  fullname: Feng, Yixue
  organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States
– sequence: 2
  givenname: Bramsh Q.
  surname: Chandio
  fullname: Chandio, Bramsh Q.
  organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States
– sequence: 3
  givenname: Sophia I.
  surname: Thomopoulos
  fullname: Thomopoulos, Sophia I.
  organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States
– sequence: 4
  givenname: Tamoghna
  surname: Chattopadhyay
  fullname: Chattopadhyay, Tamoghna
  organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States
– sequence: 5
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: University of Southern California,Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine,Marina del Rey,CA,United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38083771$$D View this record in MEDLINE/PubMed
BookMark eNpNkctOwzAURA0CQSn9AwReskm5jp3YXtLylIpYtLCtnOQGLFK72I5Q_54iHmI1I83RLGaOyJ7zDgk5YzBmDPTF9cNkKkAqOc4h52MGXACA3iEjLbXiBfBcCMl2ySAvtcigBLH3zx-SUYy2goIXotA5PyCHXIHiUrIBeXs2wZpkvTMdveyTR1f7BkOkrQ_0Fh2Gbepe6Hzj0ismW9NFMHXyL8GsXzfZxERs6KR3TYd0gat1ZxJGah01dOY_siuTDJ1j-uo4Jvut6SKOfnRInm6uF9O7bPZ4ez-9nGWWg05ZW0vBuFFNhdpIxLrSEjWwVmqEFkEBNKIWDMqqMLxqpOIalFKoylKyUvEhOf_uXQf_3mNMy5WNNXadcej7uMw15JpzpsotevqD9tUKm-U62JUJm-XvQFvg5BuwiPgX_17APwGBg3hF
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
ESBDL
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/EMBC40787.2023.10340009
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISBN 9798350324471
EISSN 2694-0604
EndPage 6
ExternalDocumentID 38083771
10340009
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Health
  funderid: 10.13039/100018696
– fundername: NIA NIH HHS
  grantid: RF1 AG057892
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
ESBDL
IEGSK
IJVOP
OCL
RIE
RIL
RIO
AAWTH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133788300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2694-0604
IngestDate Thu Oct 02 06:41:17 EDT 2025
Wed Feb 19 02:08:05 EST 2025
Wed Jun 26 19:38:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ieeexplore.ieee.org/document/10340009
PMID 38083771
PQID 2902933186
PQPubID 23479
PageCount 6
ParticipantIDs pubmed_primary_38083771
ieee_primary_10340009
proquest_miscellaneous_2902933186
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
ssib061542107
Score 1.8471969
Snippet White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adult
Benchmarking
Brain - diagnostic imaging
Estimation
Humans
Image Processing, Computer-Assisted - methods
Kernel
Measurement
Shape
Sociology
Training
White matter
White Matter - diagnostic imaging
Title Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting
URI https://ieeexplore.ieee.org/document/10340009
https://www.ncbi.nlm.nih.gov/pubmed/38083771
https://www.proquest.com/docview/2902933186
Volume 2023
WOSCitedRecordID wos001133788300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUAIdQJEAXKR2UkVpe0cWNnpEDFUKpKFNStspOLVAFJ1SYg_j13TgIsDCxRljiRffG9O997x9ilZ2UMUaKFNRqElDIR2kZKWHSHMjC9QCeua8lIjcd6NgsnFVndcWEAwBWfQYdu3Vl-nEUFpcrwD_el5-h6m0qpkqxVG4_sYaD3Syil7yM2QPRS1XR1vfDq7mFwQ8dWqkM9wzv1aA2242tEIsrR6Omtf6NN53WGu__83j3W_OHv8cm3Z9pnG5AesJdnDIur1B-_LvKMJCypjJkjbuWl_DTVQPPHzxRRIRoUnxKFqtK0FgP0dzEfFKTKwKfwtnwlmMoXKTd8lH2IW5Mb_giujrrJnoZ305t7UbVaEAvfC3ORRIgsfKNjC6FRAJENFSBUSFQIXgIEK2MZSYwfbd_4NlaIq3B_0qCDACMu7R-yrTRL4ZhxqQhDqCCQtk86qCayMXRNL-n7cdiFbos1aabmy1JNY15PUotd1JM-RxOncwuTQlas573QQ1CCm0_QYkflanw_Xa_cyR-jnrIGLXaZNDljW_mqgHO2Hb3ni_WqjXY003gdTx7azpq-AC6NxTA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUQRbAniljoFlqMxNVLPpzYOXb5EBVhhcSCuEV2MpFWtMkKklb9951xEuiFQ2-5xInGY88be94bxk48KwvISy2s0SCklKXQNlfCYjiUsQliXbquJamaz_XjY3Lbk9UdFwYAXPEZTOnR3eUXdd7SURmu8FB6jq73IZIy8Du61uA-MsBU7x-plChEdID4pa_q8r3k9OJmdkYXV2pKXcOnw3gjthlqxCLKEenpu-_jTRd3Lrf_848_svEbg4_fvsamHbYG1S57esDEuD_849_apiYRSypk5ohceSdATVXQ_O5PhbgQXYoviETVq1qLGUa8gs9a0mXgC_i5-kFAlS8rbnha_xbnpjH8Dlwl9ZjdX14szq5E32xBLEMvaUSZI7YIjS4sJEYB5DZRgGChVAl4JRCwLGQuMYO0kQltoRBZ4Q6lQccx5lw63GPrVV3BJ8alIhSh4ljaiJRQTW4L8E1QRmGR-OBP2Jgsla06PY1sMNKEHQ9Gz9DJ6ebCVFC3L1mQeAhLcPuJJ2y_m43Xt4eZ-_zOqEds62pxk2bp9_n1ARvRxHdHKIdsvXlu4QvbyH81y5fnr86b_gJSFsaD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Variational+Autoencoders+for+Generating+Synthetic+Tractography-Based+Bundle+Templates+in+a+Low-Data+Setting&rft.au=Feng%2C+Yixue&rft.au=Chandio%2C+Bramsh+Q.&rft.au=Thomopoulos%2C+Sophia+I.&rft.au=Chattopadhyay%2C+Tamoghna&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FEMBC40787.2023.10340009&rft_id=info%3Apmid%2F38083771&rft.externalDocID=10340009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon