Importance of methodological choices in data manipulation for validating epileptic seizure detection models

Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environment...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Ročník 2023; s. 1 - 7
Hlavní autori: Pale, Una, Teijeiro, Tomas, Atienza, David
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2023
Predmet:
ISSN:2694-0604, 2694-0604
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet widely available. Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures. However, another problem is the heterogeneity of methodological approaches in research, leading to slower progress, difficulty in comparing results, and low reproducibility. Therefore, this article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems. We characterize the influence of individual choices using a typical ensemble random-forest model and the publicly available CHB-MIT database, providing a broader picture of each decision and giving good-practice recommendations, based on our experience, where possible.
AbstractList Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet widely available. Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures. However, another problem is the heterogeneity of methodological approaches in research, leading to slower progress, difficulty in comparing results, and low reproducibility. Therefore, this article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems. We characterize the influence of individual choices using a typical ensemble random-forest model and the publicly available CHB-MIT database, providing a broader picture of each decision and giving good-practice recommendations, based on our experience, where possible.
Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet widely available. Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures. However, another problem is the heterogeneity of methodological approaches in research, leading to slower progress, difficulty in comparing results, and low reproducibility. Therefore, this article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems. We characterize the influence of individual choices using a typical ensemble random-forest model and the publicly available CHB-MIT database, providing a broader picture of each decision and giving good-practice recommendations, based on our experience, where possible.Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet widely available. Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures. However, another problem is the heterogeneity of methodological approaches in research, leading to slower progress, difficulty in comparing results, and low reproducibility. Therefore, this article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems. We characterize the influence of individual choices using a typical ensemble random-forest model and the publicly available CHB-MIT database, providing a broader picture of each decision and giving good-practice recommendations, based on our experience, where possible.
Author Pale, Una
Atienza, David
Teijeiro, Tomas
Author_xml – sequence: 1
  givenname: Una
  surname: Pale
  fullname: Pale, Una
  email: una.pale@epfl.ch
  organization: Ecole Polytechnique Federale de Lausanne (EPFL),Embedded Systems Laboratory (ESL),Switzerland
– sequence: 2
  givenname: Tomas
  surname: Teijeiro
  fullname: Teijeiro, Tomas
  email: tteijeiro@bcamath.org
  organization: Ecole Polytechnique Federale de Lausanne (EPFL),Embedded Systems Laboratory (ESL),Switzerland
– sequence: 3
  givenname: David
  surname: Atienza
  fullname: Atienza, David
  email: david.atienza@epfl.ch
  organization: Ecole Polytechnique Federale de Lausanne (EPFL),Embedded Systems Laboratory (ESL),Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38083016$$D View this record in MEDLINE/PubMed
BookMark eNpN0UtLxDAQB_Aoiq7rfgPRHL3sOs07R13WByhe9Lyk6VSDaVObVtBP7-ILTzPw_zEMMwdkp00tEnJSwKIowJ6t7i6WArTRCwaMLwrgAoTlW2RmtTVcAmdC6GKbTJiyYg4KxM6_fp_Mcg4lSC6FtIzvkX1uwHAo1IS83DRd6gfXeqSppg0Oz6lKMT0F7yL1zyl4zDS0tHKDo41rQzdGN4TU0jr19M3FsElC-0SxCxG7IXiaMXyMPdIKB_RftEkVxnxIdmsXM85-6pQ8Xq4eltfz2_urm-X57TxwsMOcu1JJaVBbVoNQopK-VKIWShabpbWyhXSyMs4g1k4K7bGUJThVmspoJgWfktPvuV2fXkfMw7oJ2WOMrsU05jWzwCxXGtSGHv_QsWywWnd9aFz_vv490AYcfYOAiH_x7wv4J0yaeUk
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/EMBC40787.2023.10340493
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISBN 9798350324471
EISSN 2694-0604
EndPage 7
ExternalDocumentID 38083016
10340493
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
AAWTH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i309t-3ab6558e792f0464d5cb64f465183076915a5d8a8eefa547ceb5b0a6b8d872543
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133788302080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2694-0604
IngestDate Thu Oct 02 14:58:52 EDT 2025
Wed Feb 19 02:08:11 EST 2025
Wed Jun 26 19:24:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i309t-3ab6558e792f0464d5cb64f465183076915a5d8a8eefa547ceb5b0a6b8d872543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/20.500.11824/1716
PMID 38083016
PQID 2902936706
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2902936706
pubmed_primary_38083016
ieee_primary_10340493
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
ssib061542107
Score 2.233997
Snippet Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms comparability
cross-validation approaches
data selection
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Estimation
Humans
Machine learning
Methodological choices
Neurological diseases
performance metrics
reproducibility
Reproducibility of Results
seizure detection
Seizures - diagnosis
Sociology
Training
Wearable computers
Wearable Electronic Devices
Title Importance of methodological choices in data manipulation for validating epileptic seizure detection models
URI https://ieeexplore.ieee.org/document/10340493
https://www.ncbi.nlm.nih.gov/pubmed/38083016
https://www.proquest.com/docview/2902936706
Volume 2023
WOSCitedRecordID wos001133788302080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0I8eBJjaj4QdbEa7HQ7kevEogmQjhowo3sdqemMRYC1IO_3pktRS8cvDRNmm6a3dmZ130z8xi7xyjgMAq7wEJig1iYLNCRzgIEAxJcz6ks9S3zX9RkomezZLotVve1MADgk8-gS7eey3eLtKSjMtzhUYyINmqwhlKqKtaqjSfu44_en0YpIkJsgOhlm9PVC5OH4fhxQLSV6pJmeLcebaursh9i-lAzOv7nR56w1m_RHp_uwtEpO4DijH08f3qATQ8XGa_0omt_x9H1kZ_gecEpU5RTL4xaz4sjmuVohjnVPxTvHJboP9C_pHwN-Xe5Au5g4_O4Cu7ldNYt9jYavg6egq2-QpBHYbIJImOlEBpU0s-I4XQitTLOSB1d49aXSU8Y4bTRAJkRsUrBChsaabXTioroz1mzWBRwyTiiFksMbeSkiQGM6QsnwRKNCdKYtM1aNFPzZdVCY15PUpvd1ZM-R7smssIUsCjX834SIhKRKpRtdlGtxu7tSCNwRKx6tWfUa3ZEK1ydlNyw5mZVwi07TL82-XrVQeOZabxOpuOON6EfG9zFLA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6-QE8qrro-I3jt2lfS9OqyorguHlbwVpJmKkVsl3148Nc7k25XLx68FUpDSCYzX_PNzMfYNUYBi1HYegZS48VCF56KVOEhGJBgA5sUuWuZP0xGI_X6mj4vi9VdLQwAuOQz6NGj4_JtnS_oqgxPeBQjoo3W2aaI4zBoyrVa84lD_NX71SpFRIgOEL8ss7oCP70ZPN32ibhKeqQa3mvHWyqr_A0yXbC52_3nNPdY56dsjz-vAtI-W4PqgL0_fDiITS_rgjeK0a3H4-j8yFPwsuKUK8qpG0ar6MURz3I0xJIqIKo3DhP0IOhhcj6D8msxBW5h7jK5Ku4EdWYd9nI3GPfvvaXCgldGfjr3Im2kEAqSNCyI47QiNzIuSB9d4eGXaSC0sEorgEKLOMnBCONraZRVCZXRH7KNqq7gmHHELYY42shKHQNoHQorwRCRCVLrvMs6tFLZpGmikbWL1GVX7aJnaNlEV-gK6sUsC1MfsYhMfNllR81urL6OFEJHRKsnf4x6ybbvx0_DbPgwejxlO7Tbzb3JGduYTxdwzrbyz3k5m144E_oGOyLGfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+45th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Importance+of+methodological+choices+in+data+manipulation+for+validating+epileptic+seizure+detection+models&rft.au=Pale%2C+Una&rft.au=Teijeiro%2C+Tomas&rft.au=Atienza%2C+David&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FEMBC40787.2023.10340493&rft.externalDocID=10340493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon