GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency

We present an approach to learning regular spatial transformations between image pairs in the context of medical image registration. Contrary to optimization-based registration techniques and many modern learning-based methods, we do not directly penalize transformation irregularities but instead pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) Ročník 2023; s. 18084 - 18094
Hlavní autori: Tian, Lin, Greer, Hastings, Vialard, Francois-Xavier, Kwitt, Roland, Estepar, Raul San Jose, Rushmore, Richard Jarrett, Makris, Nikolaos, Bouix, Sylvain, Niethammer, Marc
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.06.2023
Predmet:
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present an approach to learning regular spatial transformations between image pairs in the context of medical image registration. Contrary to optimization-based registration techniques and many modern learning-based methods, we do not directly penalize transformation irregularities but instead promote transformation regularity via an inverse consistency penalty. We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images. Different from existing approaches, we compose these two resulting maps and regularize deviations of the Jacobian of this composition from the identity matrix. This regularizer - GradICON - results in much better convergence when training registration models compared to promoting inverse consistency of the composition of maps directly while retaining the desirable implicit regularization effects of the latter. We achieve state-of-the-art registration performance on a variety of real-world medical image datasets using a single set of hyperparameters and a single non-dataset-specific training protocol. Code is available at https://github.com/uncbiag/ICON.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR52729.2023.01734