Impact of Quantization Noise on CNN-based Joint Source-Channel Coding and Modulation
This paper investigated the impact of a quantizer in analog-to-digital and digital-to-analog converters in communication devices on image quality when using deep learning-based joint source-channel coding modulation (JSCCM) for image transmission. In recent years, JSCCM, which efficiently encodes im...
Uloženo v:
| Vydáno v: | IEEE Consumer Communications and Networking Conference s. 465 - 468 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina japonština |
| Vydáno: |
IEEE
08.01.2023
|
| Témata: | |
| ISSN: | 2331-9860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper investigated the impact of a quantizer in analog-to-digital and digital-to-analog converters in communication devices on image quality when using deep learning-based joint source-channel coding modulation (JSCCM) for image transmission. In recent years, JSCCM, which efficiently encodes images and videos with low information entropy, has attracted great attention. JSCCM has a structure based on an autoencoder and determines the compression ratios for the image input by adjusting the number of IQ symbol output. The IQ symbol output from the encoder are allocated to symbol constellations with higher degrees of arbitrariness than those in typical square quadrature amplitude modulation and are therefore expected to be strongly affected by the quantization noise. In this paper, we employed quantization to the IQ symbol sequence and investigated its effect. Adjusting the quantizer's clipping ratio and the number of quantization bits, we examined the images' tolerance of the peak signal-to-noise ratio (PSNR). The simulation results showed that by adequately adjusting the clipping ratio, the image quality can be guaranteed to be equivalent to ideal conditions without quantization noise, and the number of required quantization bits that do not degrade the PSNR, was calculated. |
|---|---|
| AbstractList | This paper investigated the impact of a quantizer in analog-to-digital and digital-to-analog converters in communication devices on image quality when using deep learning-based joint source-channel coding modulation (JSCCM) for image transmission. In recent years, JSCCM, which efficiently encodes images and videos with low information entropy, has attracted great attention. JSCCM has a structure based on an autoencoder and determines the compression ratios for the image input by adjusting the number of IQ symbol output. The IQ symbol output from the encoder are allocated to symbol constellations with higher degrees of arbitrariness than those in typical square quadrature amplitude modulation and are therefore expected to be strongly affected by the quantization noise. In this paper, we employed quantization to the IQ symbol sequence and investigated its effect. Adjusting the quantizer's clipping ratio and the number of quantization bits, we examined the images' tolerance of the peak signal-to-noise ratio (PSNR). The simulation results showed that by adequately adjusting the clipping ratio, the image quality can be guaranteed to be equivalent to ideal conditions without quantization noise, and the number of required quantization bits that do not degrade the PSNR, was calculated. |
| Author | Hara-Azumi, Yuko Nakayama, Yu Inoue, Yoshiaki Matsumoto, Keigo Hisano, Daisuke Maruta, Kazuki |
| Author_xml | – sequence: 1 givenname: Keigo surname: Matsumoto fullname: Matsumoto, Keigo email: k_matsumoto@pn.comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University,Osaka,Japan – sequence: 2 givenname: Yoshiaki surname: Inoue fullname: Inoue, Yoshiaki email: yoshiaki@comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University,Osaka,Japan – sequence: 3 givenname: Yuko surname: Hara-Azumi fullname: Hara-Azumi, Yuko email: hara@cad.ict.e.titech.ac.jp organization: School of Engineering, Tokyo Institute of Technology,Tokyo,Japan – sequence: 4 givenname: Kazuki surname: Maruta fullname: Maruta, Kazuki email: kazuki.maruta@ieee.org organization: Graduate School of Engineering, Tokyo University of Science,Tokyo,Japan – sequence: 5 givenname: Yu surname: Nakayama fullname: Nakayama, Yu email: yu.nakayama@ieee.org organization: Institute of Engineering, Tokyo University of Agriculture and Technology,Tokyo,Japan – sequence: 6 givenname: Daisuke surname: Hisano fullname: Hisano, Daisuke email: hisano@comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University,Osaka,Japan |
| BookMark | eNo1kMtOwzAURA0CiVLyB0j4BxKuH4ntJbJ4FJUgRFlX14kDRqldJekCvp7yWs1ojmYWc0qOYoqekAsGBWNgLq2tbckqKQsOXBQMoAKp9QHJjNKsqkpplJDikMy4ECw3uoITko3jOwAw0GVp9IysFpstNhNNHX3aYZzCJ04hRVqnMHq6N7auc4ejb-l9CnGiz2k3ND63bxij76lNbYivFGNLH1K763_aZ-S4w3702Z_OycvN9cre5cvH24W9WuaBGzPlWjqpoFWSCezQKOxUw_ehZug4aoXaM8Oxah2y5htx7TotS18aZ0A5MSfnv7vBe7_eDmGDw8f6_wjxBbsDU94 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCNC51644.2023.10060488 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665497343 1665497343 |
| EISSN | 2331-9860 |
| EndPage | 468 |
| ExternalDocumentID | 10060488 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i299t-84b470d7413afa97af7c284b81ab2a87a8e192a6dba1c7c2828bf845e59b907b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982339100088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:18:25 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i299t-84b470d7413afa97af7c284b81ab2a87a8e192a6dba1c7c2828bf845e59b907b3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10060488 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-08 |
| PublicationDateYYYYMMDD | 2023-01-08 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Consumer Communications and Networking Conference |
| PublicationTitleAbbrev | CCNC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001085598 |
| Score | 1.854677 |
| Snippet | This paper investigated the impact of a quantizer in analog-to-digital and digital-to-analog converters in communication devices on image quality when using... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 465 |
| SubjectTerms | deep learning Image coding Image communication Image quality Joint source-channel coding PSNR quantization Quantization (signal) Symbols Training |
| Title | Impact of Quantization Noise on CNN-based Joint Source-Channel Coding and Modulation |
| URI | https://ieeexplore.ieee.org/document/10060488 |
| WOSCitedRecordID | wos000982339100088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uePCk4sTf5OA1c23TJTkXhwqWiRN2Gy_NCxSkka3b32-SdQ4PHryFlITwXsL38vV9eYTcW21zMIgs41XOwiZhCiBh2gAGNYJWI4jFJkRZyvlcTTuxetTCIGJMPsNhaMZ_-cZV60CV-RMennqRskd6Qoy3Yq09oRIyrpTscriSkXooirLI_XUgUCdpNtyN_lVHJcLI5PifCzghg70gj05_oOaUHGBzRmbPUeFInaVva2-gTlFJS1evkPpGUZYsoJShL65uWvoeiXoWBAUNftLChckoNIa-OtOV8RqQj8njrHhiXZEEVnskaZnkmouR8YFBBhaUACsqDzlaJqBTkAIk-iAOxkZDUoVPqdRW8hxz5f0gdHZO-o1r8IJQblHpxAhMc-2jrEyhd2NmK2u4ybhNL8kgmGTxtX0HY7GzxtUf_dfkKBg-EhbyhvTb5RpvyWG1aevV8i567xvzBJu5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjNXNvUJOeibLqFiRN2G0nzAgVpZOv8-01i5_DgwVtIaSjvpXyvX9-XD6Fbq22uDADJaJmTsEmIUCoh2igIagQt-iqaTTAp-WwmJq1YPWphACA2n0EvDOO_fOPKVaDK_BsejnrhfBvtBOusVq61oVRCz5XgbRdX0hd3RSGL3H8QBPIkzXrr-385qUQgeTz45yMcou5GkocnP2BzhLagPkbTYdQ4Ymfxy8qHqNVUYumqJWA_KKQkAacMfnJV3eDXSNWTICmo4R0XLiyGVW3w2JnWyKuL3h4fpsWAtDYJpPJY0hBONWV940uDTFklmLKs9KCjeaJ0qjhTHHwZp-6NVkkZLqVcW05zyIXPBNPZCerUroZThKkFoRPDIM21r7MyAT6RmS2toSajNj1D3RCS-cf3SRjzdTTO_5i_QXuD6Xg0Hw3l8wXaD0mI9AW_RJ1msYIrtFt-NtVycR0z-QVBop8C |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Consumer+Communications+and+Networking+Conference&rft.atitle=Impact+of+Quantization+Noise+on+CNN-based+Joint+Source-Channel+Coding+and+Modulation&rft.au=Matsumoto%2C+Keigo&rft.au=Inoue%2C+Yoshiaki&rft.au=Hara-Azumi%2C+Yuko&rft.au=Maruta%2C+Kazuki&rft.date=2023-01-08&rft.pub=IEEE&rft.eissn=2331-9860&rft.spage=465&rft.epage=468&rft_id=info:doi/10.1109%2FCCNC51644.2023.10060488&rft.externalDocID=10060488 |