An Empirical Study on Software Aging of Long-Running Object Detection Algorithms

Efficient and effective object detection is a key problem in Computer Vision. Numerous object detection algorithms have been developed, whose aim is to achieve two conflicting goals, namely accuracy and efficiency, while being executed in real-time with high robustness. Many of these algorithms must...

Full description

Saved in:
Bibliographic Details
Published in:IEEE International Conference on Software Quality, Reliability and Security (Online) pp. 1091 - 1102
Main Authors: Pietrantuono, Roberto, Cotroneo, Domenico, Andrade, Ermeson, Machida, Fumio
Format: Conference Proceeding
Language:English
Japanese
Published: IEEE 01.12.2022
Subjects:
ISSN:2693-9177
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Efficient and effective object detection is a key problem in Computer Vision. Numerous object detection algorithms have been developed, whose aim is to achieve two conflicting goals, namely accuracy and efficiency, while being executed in real-time with high robustness. Many of these algorithms must run for an extended period of time, i.e., in video surveillance or in self-driving cars - a working condition that make them subject to the risk of software aging.In this work, we focus on evaluating several object detection algorithms to understand if and to what extent they are affected by software aging. A measurement-based aging approach was adopted, with a series of long-running tests and subsequent data analysis. The results report significant trends of performance degradation, sometimes leading to aging-related failures, as well as memory consumption trends, which turned out to be the main issue across all the experiments.
AbstractList Efficient and effective object detection is a key problem in Computer Vision. Numerous object detection algorithms have been developed, whose aim is to achieve two conflicting goals, namely accuracy and efficiency, while being executed in real-time with high robustness. Many of these algorithms must run for an extended period of time, i.e., in video surveillance or in self-driving cars - a working condition that make them subject to the risk of software aging.In this work, we focus on evaluating several object detection algorithms to understand if and to what extent they are affected by software aging. A measurement-based aging approach was adopted, with a series of long-running tests and subsequent data analysis. The results report significant trends of performance degradation, sometimes leading to aging-related failures, as well as memory consumption trends, which turned out to be the main issue across all the experiments.
Author Andrade, Ermeson
Machida, Fumio
Pietrantuono, Roberto
Cotroneo, Domenico
Author_xml – sequence: 1
  givenname: Roberto
  surname: Pietrantuono
  fullname: Pietrantuono, Roberto
  email: roberto.pietrantuono@unina.it
  organization: University of Naples Federico II,Naples,Italy
– sequence: 2
  givenname: Domenico
  surname: Cotroneo
  fullname: Cotroneo, Domenico
  email: cotroneo@unina.it
  organization: University of Naples Federico II,Naples,Italy
– sequence: 3
  givenname: Ermeson
  surname: Andrade
  fullname: Andrade, Ermeson
  email: ermeson.andrade@ufrpe.br
  organization: Federal Rural University of Pernambuco,Recife,Brazil
– sequence: 4
  givenname: Fumio
  surname: Machida
  fullname: Machida, Fumio
  email: machida@cs.tsukuba.ac.jp
  organization: University of Tsukuba,Tsukuba,Japan
BookMark eNotjF1PwjAYRqvRREB-gV70Dwz7vlvb9XJB_EiWoKDXpJ-zBDqyjRj-vRi9OnlynpwxuUpt8oTcAZsBMPXwvlpzyUHOkCHOGAPACzIGIXghJSvYJRmhUHmmQMobMu37LWMsx7MBGJG3KtHF_hC7aPWOroejO9E20XUbhm_deVo1MTW0DbRuU5Otjin97qXZejvQRz-cEc__ate0XRy-9v0tuQ561_vpPyfk82nxMX_J6uXz67yqs4hKDZkEmzvOuCoLLnJjg9dlCE673AhlS46iFE4XaEwwxmqNHl1AVBY8oHYmn5D7v2703m8OXdzr7rQBxgQWyPMf2AhSVw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QRS57517.2022.00112
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665477040
9781665477048
EISSN 2693-9177
EndPage 1102
ExternalDocumentID 10062425
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i299t-71c3d505984563bcfea8ffdad3b69c852686da42bbfbbcaa2e2df229c1e12adb3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980981100102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i299t-71c3d505984563bcfea8ffdad3b69c852686da42bbfbbcaa2e2df229c1e12adb3
OpenAccessLink https://cir.nii.ac.jp/crid/1870865118083095936
PageCount 12
ParticipantIDs ieee_primary_10062425
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE International Conference on Software Quality, Reliability and Security (Online)
PublicationTitleAbbrev QRS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204011
Score 1.8228728
Snippet Efficient and effective object detection is a key problem in Computer Vision. Numerous object detection algorithms have been developed, whose aim is to achieve...
SourceID ieee
SourceType Publisher
StartPage 1091
SubjectTerms Aging
Computer bugs
computer vision
Memory management
Object detection
software aging
Software algorithms
Statistical analysis
Title An Empirical Study on Software Aging of Long-Running Object Detection Algorithms
URI https://ieeexplore.ieee.org/document/10062425
WOSCitedRecordID wos000980981100102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sBqiJ00dsYKWjFUUFpA3So_ziUSTao0BfHvsd1SxMDAZnmxdH5857vvu0PoUiuhINOSaKEjkigbESESS4xmQLWVqQwZ3Zc-v78X43E2WIvVgxYGAAL5DK78MOTyTamXPlTmbnjk5QztBmpwzldirU1AJWbuPFK6rixEo-z6cTjyWQXufoGMhZQD-9VDJUBIb_efi--h1o8YDw82MLOPtqA4QINOgbuzeR4KfGBPBvzEZYFH7lH9kBXgju89hEuL-2UxJcNlaEyEH5SPuuBbqAMBq8Cdt2lZ5fXrbNFCz73u080dWTdHILlDkJpwqmPj3JdMOBcoVtqCFNYaaWKVZlr4Ki6pkQlTyiqlpWTAjGUs0xQok0bFh6hZlAUcIWxVmlrjfEGr2kkKXGrqHAXg4NALmFTHqOXNMZmv6l9Mvi1x8sf8KdrxFl-RPs5Qs66WcI629XudL6qLsGtf3fGa9Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_C6SrvLbvdIFIJxRQQ03EgfU9xEdsmyaPz3tgUxHjx4a3ppMn1805nvm0HoUgomIJbck0zWvEDomsdYoD0lKRCpechdRvcliTodNhzG3aVY3WlhAMCRz-DKDl0uX-VybkNl5obXrJyhvo426kFAyUKutQqp-NScSEKWtYVILb5-6vVtXiEy_0BKXdKB_uqi4kCktfPP5XdR9UeOh7sroNlDa5Dto24jw83JNHUlPrClA37iPMN986x-8AJww3YfwrnGSZ6Nvd7ctSbCj8LGXfAtlI6CleHG2zgv0vJ1Mqui51ZzcNP2lu0RvNRgSOlFRPrKODAxM06QL6QGzrRWXPkijCWzdVxCxQMqhBZCck6BKk1pLAkQypXwD1AlyzM4RFiLMNTKeINa1IMQIi6JcRUgAoNfQLk4QlVrjtF0UQFj9G2J4z_mL9BWe_CQjJK7zv0J2rbWX1BATlGlLOZwhjble5nOinO3g18d-J48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Software+Quality%2C+Reliability+and+Security+%28Online%29&rft.atitle=An+Empirical+Study+on+Software+Aging+of+Long-Running+Object+Detection+Algorithms&rft.au=Pietrantuono%2C+Roberto&rft.au=Cotroneo%2C+Domenico&rft.au=Andrade%2C+Ermeson&rft.au=Machida%2C+Fumio&rft.date=2022-12-01&rft.pub=IEEE&rft.eissn=2693-9177&rft.spage=1091&rft.epage=1102&rft_id=info:doi/10.1109%2FQRS57517.2022.00112&rft.externalDocID=10062425