Quantifying Societal Bias Amplification in Image Captioning

We study societal bias amplification in image captioning. Image captioning models have been shown to perpetuate gender and racial biases, however, metrics to measure, quantify, and evaluate the societal bias in captions are not yet standardized. We provide a comprehensive study on the strengths and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 13440 - 13449
Hlavní autori: Hirota, Yusuke, Nakashima, Yuta, Garcia, Noa
Médium: Konferenčný príspevok..
Jazyk:English
Japanese
Vydavateľské údaje: IEEE 01.06.2022
Predmet:
ISSN:1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study societal bias amplification in image captioning. Image captioning models have been shown to perpetuate gender and racial biases, however, metrics to measure, quantify, and evaluate the societal bias in captions are not yet standardized. We provide a comprehensive study on the strengths and limitations of each metric, and propose LIC, a metric to study captioning bias amplification. We argue that, for image captioning, it is not enough to focus on the correct prediction of the protected attribute, and the whole context should be taken into account. We conduct extensive evaluation on traditional and state-of-the-art image captioning models, and surprisingly find that, by only focusing on the protected attribute prediction, bias mitigation models are unexpectedly amplifying bias.
ISSN:1063-6919
DOI:10.1109/CVPR52688.2022.01309