On the Sensitivity of Boolean and Multiple-Valued Symmetric Functions
An n variable Boolean logic function f(\vec{x}) is sensitive to x_{i} if there is at least one assignment of values to \vec{x}-\{x_{i}\} such that f changes when x_{i} changes. We investigate the sensitivity of Boolean logic functions experimentally. For example, we show the use of a reconfigurable...
Uloženo v:
| Vydáno v: | Proceedings / International Symposium on Multiple-Valued Logic s. 125 - 130 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina japonština |
| Vydáno: |
IEEE
01.05.2022
|
| Témata: | |
| ISSN: | 2378-2226 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An n variable Boolean logic function f(\vec{x}) is sensitive to x_{i} if there is at least one assignment of values to \vec{x}-\{x_{i}\} such that f changes when x_{i} changes. We investigate the sensitivity of Boolean logic functions experimentally. For example, we show the use of a reconfigurable computer in computing the sensitivity of n -variable Boolean functions with up through n=5 variables. For n=5 , this computation is 192 times faster than a single Xeon microprocessor and 1.8 times faster than a cluster computer with 256 processors. We also examine sensitivity in multiple-valued logic functions. |
|---|---|
| ISSN: | 2378-2226 |
| DOI: | 10.1109/ISMVL52857.2022.00026 |