On the Sensitivity of Boolean and Multiple-Valued Symmetric Functions

An n variable Boolean logic function f(\vec{x}) is sensitive to x_{i} if there is at least one assignment of values to \vec{x}-\{x_{i}\} such that f changes when x_{i} changes. We investigate the sensitivity of Boolean logic functions experimentally. For example, we show the use of a reconfigurable...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Symposium on Multiple-Valued Logic s. 125 - 130
Hlavní autoři: Butler, Jon T., Sasao, Tsutomu
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: IEEE 01.05.2022
Témata:
ISSN:2378-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An n variable Boolean logic function f(\vec{x}) is sensitive to x_{i} if there is at least one assignment of values to \vec{x}-\{x_{i}\} such that f changes when x_{i} changes. We investigate the sensitivity of Boolean logic functions experimentally. For example, we show the use of a reconfigurable computer in computing the sensitivity of n -variable Boolean functions with up through n=5 variables. For n=5 , this computation is 192 times faster than a single Xeon microprocessor and 1.8 times faster than a cluster computer with 256 processors. We also examine sensitivity in multiple-valued logic functions.
ISSN:2378-2226
DOI:10.1109/ISMVL52857.2022.00026