Non-negative matrix factorization algorithms modeling noise distributions within the exponential family

We developed non-negative factorization algorithms based on statistical distributions which are members of the exponential family, and using multiplicative update rules. We compared in detail the performance of algorithms derived using two particular exponential family distributions, assuming either...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Ročník 2005; s. 4990 - 4993
Hlavní autoři: Cheung, V.C.K., Tresch, M.C.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 2005
Témata:
ISBN:0780387414, 9780780387416
ISSN:1094-687X, 1557-170X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We developed non-negative factorization algorithms based on statistical distributions which are members of the exponential family, and using multiplicative update rules. We compared in detail the performance of algorithms derived using two particular exponential family distributions, assuming either constant variance noise (Gaussian) or signal dependent noise (gamma). These algorithms were compared on both simulated data sets and on muscle activation patterns collected from behaving animals. We found that on muscle activation patterns, which are expected to be corrupted by signal dependent noise, the factorizations identified by the algorithm assuming gamma distributed data were more robust than those identified by the algorithm assuming Gaussian distributed data
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:0780387414
9780780387416
ISSN:1094-687X
1557-170X
DOI:10.1109/IEMBS.2005.1615595