CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems

Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on High Performance Computing s. 42 - 52
Hlavní autoři: Tateiwa, Nariaki, Shinano, Yuji, Yamamura, Keiichiro, Yoshida, Akihiro, Kaji, Shizuo, Yasuda, Masaya, Fujisawa, Katsuki
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2021
Témata:
ISSN:2640-0316
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. CMAP-LAP facilitates the implementation of large-scale parallel strategies for lattice problems since all the functions are designed to be customizable and abstract. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.
AbstractList Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. CMAP-LAP facilitates the implementation of large-scale parallel strategies for lattice problems since all the functions are designed to be customizable and abstract. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.
Author Shinano, Yuji
Tateiwa, Nariaki
Yoshida, Akihiro
Yasuda, Masaya
Yamamura, Keiichiro
Fujisawa, Katsuki
Kaji, Shizuo
Author_xml – sequence: 1
  givenname: Nariaki
  surname: Tateiwa
  fullname: Tateiwa, Nariaki
  email: n-tateiwa@kyudai.jp
  organization: Graduate School of Mathematics, Kyushu University,Fukuoka,Japan
– sequence: 2
  givenname: Yuji
  orcidid: 0000-0002-2902-882X
  surname: Shinano
  fullname: Shinano, Yuji
  organization: Zuse Institute Berlin (ZIB),Applied Algorithmic Intelligence Methods (A2IM),Berlin,Germany
– sequence: 3
  givenname: Keiichiro
  surname: Yamamura
  fullname: Yamamura, Keiichiro
  email: keiichiro.yamamura@kyudai.jp
  organization: Graduate School of Mathematics, Kyushu University,Fukuoka,Japan
– sequence: 4
  givenname: Akihiro
  orcidid: 0000-0002-7856-6536
  surname: Yoshida
  fullname: Yoshida, Akihiro
  organization: Graduate School of Mathematics, Kyushu University,Fukuoka,Japan
– sequence: 5
  givenname: Shizuo
  surname: Kaji
  fullname: Kaji, Shizuo
  organization: Institute of Mathematics for Industry, Kyushu University,Fukuoka,Japan
– sequence: 6
  givenname: Masaya
  orcidid: 0000-0002-1534-5648
  surname: Yasuda
  fullname: Yasuda, Masaya
  organization: Rikkyo University,Department of Mathematics,Tokyo,Japan
– sequence: 7
  givenname: Katsuki
  orcidid: 0000-0001-8549-641X
  surname: Fujisawa
  fullname: Fujisawa, Katsuki
  organization: Institute of Mathematics for Industry, Kyushu University,Fukuoka,Japan
BookMark eNotjstKw0AUQEdRsK39Al3MDyTeO6_MuAuhWiHFgLouk-ZGRqaNTGKhf29BV2dzOJw5uzoMB2LsHiFHBPewDk2lpVAyFyAwBwC0F2zpCovGaIWAxl6ymTAKMpBobth8HL8ABKDQM7aqNmWT1WXzyKvh0IfPn-TbSHzjxzEcKZ5445OPkSJ_G-KREu-HxGs_TWFHvEnDWd6Pt-y693Gk5T8X7ONp9V6ts_r1-aUq6ywIJ6dMa0karJbo4XymDDlV9L2HVvnOFqbznbeWuqI1QnUgyQI50QM6RNI7Jxfs7q8biGj7ncLep9PWGQtKgPwFKXZMLw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HiPC53243.2021.00018
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665410168
1665410167
EISSN 2640-0316
EndPage 52
ExternalDocumentID 9680420
Genre orig-research
GroupedDBID 29H
29O
6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i293t-553e508531a041046e947ffa0b4ad876dada88ed7b624d03e80e92f01911e5c93
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782316500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue May 06 03:46:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i293t-553e508531a041046e947ffa0b4ad876dada88ed7b624d03e80e92f01911e5c93
ORCID 0000-0001-8549-641X
0000-0002-7856-6536
0000-0002-2902-882X
0000-0002-1534-5648
OpenAccessLink https://catalog.lib.kyushu-u.ac.jp/opac_download_md/4771873/4771873.pdf
PageCount 11
ParticipantIDs ieee_primary_9680420
PublicationCentury 2000
PublicationDate 2021-Dec.
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on High Performance Computing
PublicationTitleAbbrev HIPC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020125
Score 2.179258
Snippet Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems...
SourceID ieee
SourceType Publisher
StartPage 42
SubjectTerms Conferences
Cryptography
Discrete optimization
Generators
High performance computing
Lattice problem
Lattice-based cryptography
Lattices
Parallel algorithms
Quantum algorithm
Shortest vector problem
Stability analysis
Ubiquity Generator Framework
Title CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems
URI https://ieeexplore.ieee.org/document/9680420
WOSCitedRecordID wos000782316500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVp6NCpH0npNxo6Vo1tyZbVLYSEDEkwtIVsQbbOxRCS4jiF_vveOW7aoUs3IzCCk3T3TndPj7F7I8GTuFdEkAIIZWUkjGdzEUZS6VQaP85rovBEz2bxfG6SFnvYc2EAoG4-g0f6rGv5bp1t6aqsZ6IY9xgm6Ada6x1Xa59coaMNG2qc75neuEgGIYIFiSlg4NMrhSTr8UtApY4fo-P_zXzCuj9EPJ7sQ8wpa8HqjB1_KzHw5mB22HAw7Sdi0k-eOP1ZvG1LokTxKUJjdGfLT57YklRTlvx5Tb3QHLEqn9iKWt9oBhKV2XTZ62j4MhiLRiBBFBilKxGGEhBg4TGynqJiLRil89x6qbIO3ZyzzsYxOJ1GgXKehNgDE-SI6nwfwszIc9ZerVdwwXiUIRYyJrUytyqg6p3ydea7VKrYOtCXrENWWbzv3sBYNAa5-nv4mh2R2XdtHzesXZVbuGWH2UdVbMq7euG-AA-fmBM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnqq2opvc_Bo7GaTfcRbKS0Vt2XBCr2V7GZWFkor263gv3eyXasHL95CIATymPkmM18-Qu6UAEfgWWFuAsCkFj5Tjs6Y5wsZJELxMKuIwlEwmYSzmYob5H7HhQGAqvgMHmyzyuWbVbqxT2Vd5Yd4xjBA3_OkdPmWrbULr9DUejU5jjuqO8rjvodwQWAQ6HL7T6EV9vgloVJ5kGHrf3Mfkc4PFY_GOydzTBqwPCGtby0GWl_NNhn0x72YRb34kdqR-dumsKQoOkZwjAZt8UljXVjdlAV9WdlqaIpolUa6tMVvdgYrK7PukNfhYNofsVoigeXop0vmeQIQYuFF0o606VpQMsgy7SRSGzR0RhsdhmCCxHelcQSEDig3Q1zHOXipEqekuVwt4YxQP0U0pFSiRaala_N3kgcpN4mQoTYQnJO2XZX5-_YXjHm9IBd_d9-Sg9F0HM2jp8nzJTm0W7AtArkizbLYwDXZTz_KfF3cVJv4BSrmm1o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+High+Performance+Computing&rft.atitle=CMAP-LAP%3A+Configurable+Massively+Parallel+Solver+for+Lattice+Problems&rft.au=Tateiwa%2C+Nariaki&rft.au=Shinano%2C+Yuji&rft.au=Yamamura%2C+Keiichiro&rft.au=Yoshida%2C+Akihiro&rft.date=2021-12-01&rft.pub=IEEE&rft.eissn=2640-0316&rft.spage=42&rft.epage=52&rft_id=info:doi/10.1109%2FHiPC53243.2021.00018&rft.externalDocID=9680420