Object tracking using compressive local appearance model with ℓ1-regularisation
A novel compressive local appearance model-based object tracking algorithm is presented to address challenging issues in object tracking. To efficiently preserve image patches of an object and reduce the dimensionality, a random projection-based feature selection method is introduced. Modelling the...
Uložené v:
| Vydané v: | Electronics letters Ročník 50; číslo 6; s. 444 - 446 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Stevenage
The Institution of Engineering and Technology
13.03.2014
Institution of Engineering and Technology |
| Predmet: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A novel compressive local appearance model-based object tracking algorithm is presented to address challenging issues in object tracking. To efficiently preserve image patches of an object and reduce the dimensionality, a random projection-based feature selection method is introduced. Modelling the object's appearance using a sparse representation over a set of templates leads to an ℓ1-regularisation problem. To solve this problem, both the reconstruction error and the residual matrix are considered which play a key role in tracking an object with severe appearance variations using the modified likelihood function. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art tracking methods in terms of dealing with long-term partial occlusion, deformation and rotation. |
|---|---|
| ISSN: | 0013-5194 1350-911X 1350-911X |
| DOI: | 10.1049/el.2013.2763 |