Enabling Longitudinal Exploratory Analysis of Clinical COVID Data

As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 IEEE Workshop on Visual Analytics in Healthcare (VAHC) S. 19 - 24
Hauptverfasser: Borland, David, Brain, Irena, Fecho, Karamarie, Pfaff, Emily, Xu, Hao, Champion, James, Bizon, Chris, Gotz, David
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2021
Cornell University
Schlagworte:
ISSN:2331-8422, 2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.
AbstractList As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.
As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.
As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for visual analytics technologies to support exploratory analysis and hypothesis generation from longitudinal clinical data, a team of collaborators worked to apply existing event sequence visual analytics technologies to a longitudinal clinical data from a cohort of 998 patients with high rates of COVID-19 infection. This paper describes the initial steps toward this goal, including: (1) the data transformation and processing work required to prepare the data for visual analysis, (2) initial findings and observations, and (3) qualitative feedback and lessons learned which highlight key features as well as limitations to address in future work.
Author Pfaff, Emily
Xu, Hao
Gotz, David
Bizon, Chris
Brain, Irena
Fecho, Karamarie
Borland, David
Champion, James
Author_xml – sequence: 1
  givenname: David
  surname: Borland
  fullname: Borland, David
  email: borland@renci.org
  organization: RENCI, UNC-Chapel Hill
– sequence: 2
  givenname: Irena
  surname: Brain
  fullname: Brain, Irena
  email: irenab@live.unc.edu
  organization: UNC-Chapel Hill
– sequence: 3
  givenname: Karamarie
  surname: Fecho
  fullname: Fecho, Karamarie
  email: kfecho@renci.org
  organization: RENCI, UNC-Chapel Hill
– sequence: 4
  givenname: Emily
  surname: Pfaff
  fullname: Pfaff, Emily
  email: epfaff@email.unc.edu
  organization: UNC-Chapel Hill
– sequence: 5
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
  email: xuhao@renci.org
  organization: RENCI, UNC-Chapel Hill
– sequence: 6
  givenname: James
  surname: Champion
  fullname: Champion, James
  email: champioj@email.unc.edu
  organization: UNC-Chapel Hill
– sequence: 7
  givenname: Chris
  surname: Bizon
  fullname: Bizon, Chris
  email: bizon@renci.org
  organization: RENCI, UNC-Chapel Hill
– sequence: 8
  givenname: David
  surname: Gotz
  fullname: Gotz, David
  email: gotz@unc.edu
  organization: UNC-Chapel Hill
BookMark eNpVjU1PAjEQhqvBCCK_QA979LLY74-LCVlQSEi4KNdNu9vFmqXF_TDy720CMTqXmcw887w3YOCDtwDcIzhFCKrH7WyZMcIRn2KI0RTGkhdgooREnDOKIRfqEowwISiVFOPBn3kIJm37ET8wF5gxcg2GhFKOBcYjMFt4bWrnd8k6-J3r-tJ5XSeL70MdGt2F5pjM4uLYujYJVZJF1BURyDbb1TyZ607fgqtK162dnPsYvD0vXrNlut68rLLZOnVYoS4lwmijGOKaF6KkqpDYMM0Fryory0rCShElC2NEwSRBUmHGLWWmgloIbQwZg6eT99CbvS0L67tG1_mhcXvdHPOgXf7_4t17vgtfuaSQKsii4OEsaMJnb9su37u2sHWtvQ19m8dAoaRQkEf07oQ6a-1vhOKYYEnJD_DgdS8
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7X8
5PM
DOI 10.1109/VAHC53616.2021.00008
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 9781665420679
1665420677
EISSN 2331-8422
EndPage 24
ExternalDocumentID PMC8404905
9623284
Genre orig-research
GrantInformation_xml – fundername: United States National Institutes of Health
  grantid: NCATS OT2TR003430,NCATS UL1TR002489,NCATS UL1TR002489-03S4,NCATS OT3TR002020
  funderid: 10.13039/100000002
– fundername: United States National Science Foundation
  grantid: 1704018
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
7X8
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
FRJ
HCIFZ
M7S
M~E
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
5PM
ID FETCH-LOGICAL-i291t-37bab9516a6c7d49c82b5a676ffe8df80f9398cbb7c583189256e45bf0a77abb3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793859300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2331-8422
IngestDate Tue Nov 04 01:59:31 EST 2025
Mon Sep 08 06:07:14 EDT 2025
Thu Jun 29 18:38:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i291t-37bab9516a6c7d49c82b5a676ffe8df80f9398cbb7c583189256e45bf0a77abb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Working Paper/Pre-Print-1
ObjectType-Feature-3
content type line 23
PMID 34462722
PQID 2567987906
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8404905
proquest_miscellaneous_2567987906
ieee_primary_9623284
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle 2021 IEEE Workshop on Visual Analytics in Healthcare (VAHC)
PublicationTitleAbbrev VAHC
PublicationYear 2021
Publisher IEEE
Cornell University
Publisher_xml – name: IEEE
– name: Cornell University
SSID ssj0002672553
Score 1.7792255
SecondaryResourceType preprint
Snippet As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for...
As the COVID-19 pandemic continues to impact the world, data is being gathered and analyzed to better understand the disease. Recognizing the potential for...
SourceID pubmedcentral
proquest
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 19
SubjectTerms Collaboration
Conferences
COVID-19
Data visualization
Human-centered computing [Visualization]: Visualization application domains-Visual analytics
Human-centered computing [Visualization]: Visualization systems and tools
human-computer interaction
medical informatics
Medical services
Pandemics
temporal event sequence visualization
Visual analytics
Title Enabling Longitudinal Exploratory Analysis of Clinical COVID Data
URI https://ieeexplore.ieee.org/document/9623284
https://www.proquest.com/docview/2567987906
https://pubmed.ncbi.nlm.nih.gov/PMC8404905
WOSCitedRecordID wos000793859300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbG48AJ0ECMxxQkjhT6TnyEMcSkMSpeGqcpSRMxCbVobPx-nK4MJnHh1qiS83JsJ7Y_A5xEibTIFXqS7FEvpjuGp_zQeGjTKFQ8CrSp0PX7fDAQwyFmDThd5MIYY6rgM3PmPitffl7qmXsqO0fS1SROV2CF83Seq1VnwwU-nj9f3HSSKA1c4EEYVMCEoq6ZsmQ-Lgc__tIm15v_G8cW7Pyk5bFsoXC2oWGKJlx0XfYTtVm_dLWHZrmrc8XmsXWVC519A4-w0rIaB_SNde6ee1fsSk7lDjxddx87N15dF8EbhxhMSSYoqcgySmWqeR6jFqFKZMpTa43IrfAtRii0Ulwngs4skllj4kRZX3IulYp2YbUoC7MHTCKZIIlvNcm8GHkoRZxLNEiklQk1tqDppj96n0NfjOqZt-D4ez1HxI7OxyALU84-RtQVR8GJbAv40kIvaDhA6-U_xfi1Aramy2aMfrL_d6cHsOE2dv7-cQir08nMHMG6_pyOPyZt4omhaMPaZXeQ3bddCOcDtbLebfbSrjjlC7MVvqo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0or1GcGjq_tO5lj6oMVae6iltyXJJliQXenD32-y3VYLXrxtWJg8Njszycx8H8B9EHGNVKDDjT_qhOaM4QjXVw7qOPAFDTypCnT9AR0O2XSKowo8bGthlFJF8pl6tI9FLD_N5cpelT2hsdVGne7BvmXOKqu1yno4z8WnSbPXioLYs6kHvldAE7KSNWXHgdxNf_xlT7rH_xvJCdR_CvPIaGtyTqGisho0O7b-ybTJILfsQ6vUMl2RdXZdEUQnG-gRkmtSIoF-kNbrpN8mbb7kdXjrdsatnlMyIzgzH72l0QqCC-MbxTyWNA1RMl9EPKax1oqlmrkaA2RSCCojZv5aNI6NCiOhXU4pFyI4g2qWZ-ocCEfjhESulkbrhUh9zsKUo0IjWihfYgNqdvrJ5xr8Iiln3oC7zXomZkPaKAPPVL5aJKYriowasQ2gOwu9lWEhrXffZLP3AtraHDdDdKOLvzu9hcPe-GWQDPrD50s4sh95fRtyBdXlfKWu4UB-LWeL-U2xM74B8xC8xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Workshop+on+Visual+Analytics+in+Healthcare+%28VAHC%29&rft.atitle=Enabling+Longitudinal+Exploratory+Analysis+of+Clinical+COVID+Data&rft.au=Borland%2C+David&rft.au=Brain%2C+Irena&rft.au=Fecho%2C+Karamarie&rft.au=Pfaff%2C+Emily&rft.date=2021-01-01&rft.pub=IEEE&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1109%2FVAHC53616.2021.00008&rft.externalDocID=9623284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-8422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-8422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-8422&client=summon