Half-integrality based algorithms for cosegmentation of images

We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 IEEE Conference on Computer Vision and Pattern Recognition S. 2028 - 2035
Hauptverfasser: Mukherjee, Lopamudra, Singh, Vikas, Dyer, Charles R.
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2009
Schlagworte:
ISBN:1424439922, 9781424439928
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using Markov random field (MRF) energy terms for the simultaneous segmentation of the images together with histogram consistency requirements using the squared L 2 (rather than L 1 ) distance, after linearization and adjustments, yields an optimization model with some interesting combinatorial properties. We discuss these properties which are closely related to certain relaxation strategies recently introduced in computer vision. Finally, we show experimental results of the proposed approach.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:1424439922
9781424439928
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2009.5206652