Optimal convergence rates of totally asynchronous optimization

Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE Conference on Decision & Control s. 6484 - 6490
Hlavní autori: Wu, Xuyang, Magnusson, Sindri, Reza Feyzmahdavian, Hamid, Johansson, Mikael
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.12.2022
Predmet:
ISSN:2576-2370
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive explicit convergence rates for the proximal incremental aggregated gradient (PIAG) and the asynchronous block-coordinate descent (Async-BCD) methods under a specific model of total asynchrony, and show that the derived rates are order-optimal. The convergence bounds provide an insightful understanding of how the growth rate of the delays deteriorates the convergence times of the algorithms. Our theoretical findings are demonstrated by a numerical example.
AbstractList Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive explicit convergence rates for the proximal incremental aggregated gradient (PIAG) and the asynchronous block-coordinate descent (Async-BCD) methods under a specific model of total asynchrony, and show that the derived rates are order-optimal. The convergence bounds provide an insightful understanding of how the growth rate of the delays deteriorates the convergence times of the algorithms. Our theoretical findings are demonstrated by a numerical example.
Author Wu, Xuyang
Johansson, Mikael
Magnusson, Sindri
Reza Feyzmahdavian, Hamid
Author_xml – sequence: 1
  givenname: Xuyang
  surname: Wu
  fullname: Wu, Xuyang
  email: xuyangw@kth.se
  organization: KTH Royal Institute of Technology,Division of Decision and Control Systems, School of EECS,Stockholm,Sweden,SE-100 44
– sequence: 2
  givenname: Sindri
  surname: Magnusson
  fullname: Magnusson, Sindri
  email: sindri.magnusson@dsv.su.se
  organization: Stockholm University,Department of Computer and System Science,Stockholm,Sweden,SE-164 07
– sequence: 3
  givenname: Hamid
  surname: Reza Feyzmahdavian
  fullname: Reza Feyzmahdavian, Hamid
  email: hamid.feyzmahdavian@se.abb.com
  organization: ABB Cooperate Research,Västerås,Sweden,SE-721 78
– sequence: 4
  givenname: Mikael
  surname: Johansson
  fullname: Johansson, Mikael
  email: mikaelj@kth.se
  organization: KTH Royal Institute of Technology,Division of Decision and Control Systems, School of EECS,Stockholm,Sweden,SE-100 44
BookMark eNotj9tKw0AURUdRsK39AhHyA4lz5przIkisFyj0RZ_LZHKikThTklGIX2_EPm3YsBdrL9lZiIEYuwZeAHC8qe4rDVxjIbgQBSJKMOUJW6MtwRitjDUgTtlCaGtyIS2_YMtx_OBcIiq5YLe7Q-o-XZ_5GL5peKPgKRtcojGLbZZicn0_ZW6cgn8fYohfc_-36H5c6mK4ZOet60daH3PFXh82L9VTvt09Pld327wTtkx5q5FKaHTbyNbNTrrmBpWvtYCGpLUEmpdWUQPQmlrVwgulvXW2RhKonFyxq39uR0T7wzArD9P-eFf-ApWKTIM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC51059.2022.9993168
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore: IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665467612
1665467614
EISSN 2576-2370
EndPage 6490
ExternalDocumentID 9993168
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i278t-f59e81d5fd3fa4675b0694cb521de377e150874ed11f6b4b2c245c7a7b9e294a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000948128105072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:20:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i278t-f59e81d5fd3fa4675b0694cb521de377e150874ed11f6b4b2c245c7a7b9e294a3
PageCount 7
ParticipantIDs ieee_primary_9993168
PublicationCentury 2000
PublicationDate 2022-Dec.-6
PublicationDateYYYYMMDD 2022-12-06
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.8300141
Snippet Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider...
SourceID ieee
SourceType Publisher
StartPage 6484
SubjectTerms Computational modeling
Delays
Indexes
Machine learning
Machine learning algorithms
Numerical models
Resource management
Title Optimal convergence rates of totally asynchronous optimization
URI https://ieeexplore.ieee.org/document/9993168
WOSCitedRecordID wos000948128105072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlqxvsjBo9t2s9lkc_FSLR6k9qDQW0myEyjUXWm3Qv-9SbpWBS_mFEKGwIRkZpL5vgG4yYzVPDcuLHEtYtSqSDE-iKigVmd6gAoDUPhJjMfZdConDbjdYWEQMSSfYc93w19-Xpq1fyrrO2fG11lqQlMIvsVqfd26zs6ypEboxAPZH94Pg-vgIkBKe7XgrwoqwYCMDv-39BF0vpF4ZLKzMcfQwOIEDn6QCLbh7tmd-je1ICGBPGApkXgCiBUpLalK510vNkStNoXxRLgu0iell6gBmB14HT28DB-juipCNKciqyKbSnROZmrzxDq1ilR77KrRzg7nmAiBnuFdMMzj2HLNNDWUpUYooSVSyVRyCq2iLPAMiJtuuYpRUqGZzK1OXLSYYyzRqoxL04W218TsfUt8MauVcP738AXse2WHXA9-Ca1qucYr2DMf1Xy1vA679QkmjZhZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLjyq-3YNHt93NZjebi5dqqVhrDxV6K0l2AoW6K-1W6L83Sdeq4MWcQsgQmJDMTDLfNwA3qdIyyZQJS0zzKdHCFzQJfMKIlqkMUKADCvdYv5-ORnxQg9s1FgYRXfIZNm3X_eVnhVrYp7KWcWZsnaUN2IwpJcEKrfV17xpLS6MKoxMGvNW-bzvnwcSAhDQr0V81VJwJ6ez9b_F9OPrG4nmDtZU5gBrmh7D7g0awAXcv5ty_iannUsgdmhI9SwEx9wrtlYXxr6dLT8yXubJUuCbW9worUUEwj-C18zBsd_2qLoI_ISwtfR1zNG5mrLNIG8WyWFr0qpLGEmcYMYaW451RzMJQJ5JKogiNFRNMciSciugY6nmR4wl4ZrpORIicMEl5pmVk4sUMQ45apAlXp9Cwmhi_r6gvxpUSzv4evobt7vC5N-499p_OYccq3mV-JBdQL2cLvIQt9VFO5rMrt3OfQsGboA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Optimal+convergence+rates+of+totally+asynchronous+optimization&rft.au=Wu%2C+Xuyang&rft.au=Magnusson%2C+Sindri&rft.au=Reza+Feyzmahdavian%2C+Hamid&rft.au=Johansson%2C+Mikael&rft.date=2022-12-06&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=6484&rft.epage=6490&rft_id=info:doi/10.1109%2FCDC51059.2022.9993168&rft.externalDocID=9993168