Optimal convergence rates of totally asynchronous optimization
Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive e...
Uložené v:
| Vydané v: | Proceedings of the IEEE Conference on Decision & Control s. 6484 - 6490 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
06.12.2022
|
| Predmet: | |
| ISSN: | 2576-2370 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive explicit convergence rates for the proximal incremental aggregated gradient (PIAG) and the asynchronous block-coordinate descent (Async-BCD) methods under a specific model of total asynchrony, and show that the derived rates are order-optimal. The convergence bounds provide an insightful understanding of how the growth rate of the delays deteriorates the convergence times of the algorithms. Our theoretical findings are demonstrated by a numerical example. |
|---|---|
| AbstractList | Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider bounded information delays and several important algorithms lack guarantees when they operate under total asynchrony. In this paper, we derive explicit convergence rates for the proximal incremental aggregated gradient (PIAG) and the asynchronous block-coordinate descent (Async-BCD) methods under a specific model of total asynchrony, and show that the derived rates are order-optimal. The convergence bounds provide an insightful understanding of how the growth rate of the delays deteriorates the convergence times of the algorithms. Our theoretical findings are demonstrated by a numerical example. |
| Author | Wu, Xuyang Johansson, Mikael Magnusson, Sindri Reza Feyzmahdavian, Hamid |
| Author_xml | – sequence: 1 givenname: Xuyang surname: Wu fullname: Wu, Xuyang email: xuyangw@kth.se organization: KTH Royal Institute of Technology,Division of Decision and Control Systems, School of EECS,Stockholm,Sweden,SE-100 44 – sequence: 2 givenname: Sindri surname: Magnusson fullname: Magnusson, Sindri email: sindri.magnusson@dsv.su.se organization: Stockholm University,Department of Computer and System Science,Stockholm,Sweden,SE-164 07 – sequence: 3 givenname: Hamid surname: Reza Feyzmahdavian fullname: Reza Feyzmahdavian, Hamid email: hamid.feyzmahdavian@se.abb.com organization: ABB Cooperate Research,Västerås,Sweden,SE-721 78 – sequence: 4 givenname: Mikael surname: Johansson fullname: Johansson, Mikael email: mikaelj@kth.se organization: KTH Royal Institute of Technology,Division of Decision and Control Systems, School of EECS,Stockholm,Sweden,SE-100 44 |
| BookMark | eNotj9tKw0AURUdRsK39AhHyA4lz5przIkisFyj0RZ_LZHKikThTklGIX2_EPm3YsBdrL9lZiIEYuwZeAHC8qe4rDVxjIbgQBSJKMOUJW6MtwRitjDUgTtlCaGtyIS2_YMtx_OBcIiq5YLe7Q-o-XZ_5GL5peKPgKRtcojGLbZZicn0_ZW6cgn8fYohfc_-36H5c6mK4ZOet60daH3PFXh82L9VTvt09Pld327wTtkx5q5FKaHTbyNbNTrrmBpWvtYCGpLUEmpdWUQPQmlrVwgulvXW2RhKonFyxq39uR0T7wzArD9P-eFf-ApWKTIM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CDC51059.2022.9993168 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore: IEL IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665467612 1665467614 |
| EISSN | 2576-2370 |
| EndPage | 6490 |
| ExternalDocumentID | 9993168 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i278t-f59e81d5fd3fa4675b0694cb521de377e150874ed11f6b4b2c245c7a7b9e294a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000948128105072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:20:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i278t-f59e81d5fd3fa4675b0694cb521de377e150874ed11f6b4b2c245c7a7b9e294a3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9993168 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-6 |
| PublicationDateYYYYMMDD | 2022-12-06 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the IEEE Conference on Decision & Control |
| PublicationTitleAbbrev | CDC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039943 |
| Score | 1.8300141 |
| Snippet | Asynchronous optimization algorithms are at the core of modern machine learning and resource allocation systems. However, most convergence results consider... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 6484 |
| SubjectTerms | Computational modeling Delays Indexes Machine learning Machine learning algorithms Numerical models Resource management |
| Title | Optimal convergence rates of totally asynchronous optimization |
| URI | https://ieeexplore.ieee.org/document/9993168 |
| WOSCitedRecordID | wos000948128105072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlqxvsjBo9t2s9lkc_FSLR6k9qDQW0myEyjUXWm3Qv-9SbpWBS_mFEKGwIRkZpL5vgG4yYzVPDcuLHEtYtSqSDE-iKigVmd6gAoDUPhJjMfZdConDbjdYWEQMSSfYc93w19-Xpq1fyrrO2fG11lqQlMIvsVqfd26zs6ypEboxAPZH94Pg-vgIkBKe7XgrwoqwYCMDv-39BF0vpF4ZLKzMcfQwOIEDn6QCLbh7tmd-je1ICGBPGApkXgCiBUpLalK510vNkStNoXxRLgu0iell6gBmB14HT28DB-juipCNKciqyKbSnROZmrzxDq1ilR77KrRzg7nmAiBnuFdMMzj2HLNNDWUpUYooSVSyVRyCq2iLPAMiJtuuYpRUqGZzK1OXLSYYyzRqoxL04W218TsfUt8MauVcP738AXse2WHXA9-Ca1qucYr2DMf1Xy1vA679QkmjZhZ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLjyq-3YNHt93NZjebi5dqqVhrDxV6K0l2AoW6K-1W6L83Sdeq4MWcQsgQmJDMTDLfNwA3qdIyyZQJS0zzKdHCFzQJfMKIlqkMUKADCvdYv5-ORnxQg9s1FgYRXfIZNm3X_eVnhVrYp7KWcWZsnaUN2IwpJcEKrfV17xpLS6MKoxMGvNW-bzvnwcSAhDQr0V81VJwJ6ez9b_F9OPrG4nmDtZU5gBrmh7D7g0awAXcv5ty_iannUsgdmhI9SwEx9wrtlYXxr6dLT8yXubJUuCbW9worUUEwj-C18zBsd_2qLoI_ISwtfR1zNG5mrLNIG8WyWFr0qpLGEmcYMYaW451RzMJQJ5JKogiNFRNMciSciugY6nmR4wl4ZrpORIicMEl5pmVk4sUMQ45apAlXp9Cwmhi_r6gvxpUSzv4evobt7vC5N-499p_OYccq3mV-JBdQL2cLvIQt9VFO5rMrt3OfQsGboA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Optimal+convergence+rates+of+totally+asynchronous+optimization&rft.au=Wu%2C+Xuyang&rft.au=Magnusson%2C+Sindri&rft.au=Reza+Feyzmahdavian%2C+Hamid&rft.au=Johansson%2C+Mikael&rft.date=2022-12-06&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=6484&rft.epage=6490&rft_id=info:doi/10.1109%2FCDC51059.2022.9993168&rft.externalDocID=9993168 |