Coherency-Based Detection Algorithm for Synchrophasor Cyberattacks
The wide area monitoring system (WAMS) is critical for power system situational awareness, but represents a growing cybersecurity vulnerability. Malicious adversaries may seek to compromise one or more PMUs in order to effect control decisions that unnecessarily disrupt typical grid operations. One...
Uloženo v:
| Vydáno v: | 2019 North American Power Symposium (NAPS) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2019
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The wide area monitoring system (WAMS) is critical for power system situational awareness, but represents a growing cybersecurity vulnerability. Malicious adversaries may seek to compromise one or more PMUs in order to effect control decisions that unnecessarily disrupt typical grid operations. One example of a particularly pernicious attack vector is the spoofing or replaying of a fault event using one or more compromised PMUs. This work documents the development and validation of a coherency-based cyberattack detection algorithm that integrates a sliding-window singular value decomposition (SVD) with physics-based partitioning analysis to achieve accurate classification of events. Special consideration is given to discerning a sophisticated fault-replay or fault spoofing attack from actual faults. A software-based cybersecurity testbed has been developed for rigorous testing of the algorithm. The algorithm is further validated using simulated synchrophasor datasets obtained from a MinniWECC 63-bus test system. Results show that the algorithm can successfully detect fault-replay attacks even when over half of the PMUs are compromised. |
|---|---|
| DOI: | 10.1109/NAPS46351.2019.9000271 |