A Communication-Efficient Algorithm for Exponentially Fast Non-Bayesian Learning in Networks
We introduce a simple time-triggered protocol to achieve communication-efficient non-Bayesian learning over a network. Specifically, we consider a scenario where a group of agents interact over a graph with the aim of discerning the true state of the world that generates their joint observation prof...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Conference on Decision & Control s. 8347 - 8352 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2019
|
| ISSN: | 2576-2370 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We introduce a simple time-triggered protocol to achieve communication-efficient non-Bayesian learning over a network. Specifically, we consider a scenario where a group of agents interact over a graph with the aim of discerning the true state of the world that generates their joint observation profiles. To address this problem, we propose a novel distributed learning rule wherein agents aggregate neighboring beliefs based on a min-protocol, and the inter-communication intervals grow geometrically at a rate a ≥ 1. Despite such sparse communication, we show that each agent is still able to rule out every false hypothesis exponentially fast with probability 1, as long as a is finite. For the special case when communication occurs at every time-step, i.e., when a = 1, we prove that the asymptotic learning rates resulting from our algorithm are network-structure independent, and a strict improvement over existing rates. In contrast, when a>1, our analysis reveals that the asymptotic learning rates vary across agents, and exhibit a non-trivial dependence on the network topology and the relative entropies of the agents' likelihood models. This motivates us to consider the problem of allocating signal structures to agents to maximize appropriate performance metrics. In certain special cases, we show that the eccentricity centrality and the decay centrality of the underlying graph help identify optimal allocations; for more general cases, we bound the deviation from the optimal allocation as a function of the parameter a, and the diameter of the graph. |
|---|---|
| AbstractList | We introduce a simple time-triggered protocol to achieve communication-efficient non-Bayesian learning over a network. Specifically, we consider a scenario where a group of agents interact over a graph with the aim of discerning the true state of the world that generates their joint observation profiles. To address this problem, we propose a novel distributed learning rule wherein agents aggregate neighboring beliefs based on a min-protocol, and the inter-communication intervals grow geometrically at a rate a ≥ 1. Despite such sparse communication, we show that each agent is still able to rule out every false hypothesis exponentially fast with probability 1, as long as a is finite. For the special case when communication occurs at every time-step, i.e., when a = 1, we prove that the asymptotic learning rates resulting from our algorithm are network-structure independent, and a strict improvement over existing rates. In contrast, when a>1, our analysis reveals that the asymptotic learning rates vary across agents, and exhibit a non-trivial dependence on the network topology and the relative entropies of the agents' likelihood models. This motivates us to consider the problem of allocating signal structures to agents to maximize appropriate performance metrics. In certain special cases, we show that the eccentricity centrality and the decay centrality of the underlying graph help identify optimal allocations; for more general cases, we bound the deviation from the optimal allocation as a function of the parameter a, and the diameter of the graph. |
| Author | Mitra, Aritra Richards, John A. Sundaram, Shreyas |
| Author_xml | – sequence: 1 givenname: Aritra surname: Mitra fullname: Mitra, Aritra organization: Purdue University,School of Electrical and Computer Engineering – sequence: 2 givenname: John A. surname: Richards fullname: Richards, John A. organization: Sandia National Laboratories – sequence: 3 givenname: Shreyas surname: Sundaram fullname: Sundaram, Shreyas organization: Purdue University,School of Electrical and Computer Engineering |
| BookMark | eNotkM1Kw0AUhUdRsK0-gQjzAol3fpLJLGtMVSh1ozuh3KZ36mgyKcmI7dsbsKtzFh_fgTNlF6ELxNidgFQIsPflY6kBpE4lCJtakLZQxRmbCiMLIZQt7DmbyMzkiVQGrth0GL4AlLVaTdjHnJdd2_4EX2P0XUgq53ztKUQ-b3Zd7-Nny13X8-qwH2dD9Ng0R77AIfLViD_gkQaPgS8J--DDjvvAVxR_u_57uGaXDpuBbk45Y--L6q18TpavTy_lfJl4aUxMBCKKIq_tBjYmB3RWO53prdxALWtHeZaJsTujSUjI8q0GGmlNpFBgrtSM3f57PRGt971vsT-uT0-oPxXuVb0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CDC40024.2019.9029838 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1728113989 9781728113982 |
| EISSN | 2576-2370 |
| EndPage | 8352 |
| ExternalDocumentID | 9029838 |
| Genre | orig-research |
| GroupedDBID | 29P 6IE 6IH 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i277t-1aaa186c9b0b760af94f454d2b0c2cfe65512b0f74e12056d40e6c94ee3a1a633 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560779007088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 06:30:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i277t-1aaa186c9b0b760af94f454d2b0c2cfe65512b0f74e12056d40e6c94ee3a1a633 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1639419 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9029838 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Dec. |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings of the IEEE Conference on Decision & Control |
| PublicationTitleAbbrev | CDC |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039943 |
| Score | 1.8000065 |
| Snippet | We introduce a simple time-triggered protocol to achieve communication-efficient non-Bayesian learning over a network. Specifically, we consider a scenario... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 8347 |
| Title | A Communication-Efficient Algorithm for Exponentially Fast Non-Bayesian Learning in Networks |
| URI | https://ieeexplore.ieee.org/document/9029838 |
| WOSCitedRecordID | wos000560779007088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9B4kEvfoDxOz14tNCu3UePiBBPCwdNOJiQduuQBIHAMPLf-7pNlMSLSw_N0tctr0nfW_f7_R7AHTPc4uVTnfoplcIYarRilAdZlPksVTKTRbGJMI6j4VANanC_5cKgYQE-sy3XLf7lp_Nk7Y7K2srphYtoD_bCMCi5Wt-7LsZZKSqGDmeq3X3sShd_HHhLtSrDnQoqRQDpH_3v0cfQ_GHikcE2xpxAzc5O4fCXiGADXjtkh-VBe4UqBE5HOtPxHD_-394Jpqak97mYzxw4SE-nG9LXq5zEOPxBb6xjUpJKanVMJjMSl-jwVRNe-r3n7hOtaibQiReGOeVaax4FiTLMhAHTmXO2L1PPsMRLMhtghoT9LJSWe5j8pJJZHC2tFZrrQIgzqM_wZc6BMOFZHycKJDbF0khzP_JMghbCcE9fQMP5abQoZTFGlYsu_759BQduKUokyDXU8-Xa3sB-8pFPVsvbYi2_AP_hoZo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4QTdQXL2C82wcfLfS2Sx8RIRhx4QETHkxIu3VIgoPAMPLvbbeJkvji0odm6emW06TnrPu-7wBwixXR5nKQjJwIcaYUUlJgRNzYjx0cCR7zrNiEFwT-YCB6JXC35sIYwwx8pmu2m_3Lj6bh0h6V1YXVC2f-Fth2OKc4Z2t977sm0nJWcHQIFvXmQ5PbCGThW6JWmG7UUMlCSPvgfw8_BNUfLh7sraPMESjp5Bjs_5IRrIDXBtzgeaBWpgthpoONyWhqPv_f3qFJTmHrczZNLDxITiYr2JaLFAZm-L1caculhIXY6giOExjk-PBFFby0W_1mBxVVE9CYel6KiJSS-G4oFFaei2Vs3e3wiCoc0jDWrsmRTD_2uCbUpD8Rx9qM5lozSaTL2AkoJ-ZlTgHEjGrHTORy0wSOfEkcn6rQWDBFqDwDFeun4SwXxhgWLjr_-_YN2O30n7vD7mPwdAH27LLkuJBLUE7nS30FdsKPdLyYX2fr-gWWXKTh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=A+Communication-Efficient+Algorithm+for+Exponentially+Fast+Non-Bayesian+Learning+in+Networks&rft.au=Mitra%2C+Aritra&rft.au=Richards%2C+John+A.&rft.au=Sundaram%2C+Shreyas&rft.date=2019-12-01&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=8347&rft.epage=8352&rft_id=info:doi/10.1109%2FCDC40024.2019.9029838&rft.externalDocID=9029838 |