Online learning based on iterative projections in sum space of linear and Gaussian reproducing kernel Hilbert spaces

We propose a novel multikernel adaptive filtering algorithm based on the iterative projections in the sum space of reproducing kernel Hilbert spaces. We employ linear and Gaussian kernels, envisioning an application to partially-linear-system identification/estimation. The algorithm is derived by re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) S. 3362 - 3366
1. Verfasser: Yukawa, Masahiro
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2015
Schlagworte:
ISSN:1520-6149
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel multikernel adaptive filtering algorithm based on the iterative projections in the sum space of reproducing kernel Hilbert spaces. We employ linear and Gaussian kernels, envisioning an application to partially-linear-system identification/estimation. The algorithm is derived by reformulating the hyperplane projection along affine subspace (HYPASS) algorithm in the sum space. The projection is computable by virtue of Minh's theorem proved in 2010 as long as the input space has nonempty interior. Numerical examples show the efficacy of the proposed algorithm.
ISSN:1520-6149
DOI:10.1109/ICASSP.2015.7178594