Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta Anomaly Benchmark
Much of the world's data is streaming, time-series data, where anomalies give significant information in critical situations, examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to proc...
Gespeichert in:
| Veröffentlicht in: | 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) S. 38 - 44 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2015
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!