Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta Anomaly Benchmark

Much of the world's data is streaming, time-series data, where anomalies give significant information in critical situations, examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to proc...

Full description

Saved in:
Bibliographic Details
Published in:2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) pp. 38 - 44
Main Authors: Lavin, Alexander, Ahmad, Subutai
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Much of the world's data is streaming, time-series data, where anomalies give significant information in critical situations, examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to process data in real-time, not batches, and learn while simultaneously making predictions. There are no benchmarks to adequately test and score the efficacy of real-time anomaly detectors. Here we propose the Numenta Anomaly Benchmark (NAB), which attempts to provide a controlled and repeatable environment of open-source tools to test and measure anomaly detection algorithms on streaming data. The perfect detector would detect all anomalies as soon as possible, trigger no false alarms, work with real-world time-series data across a variety of domains, and automatically adapt to changing statistics. Rewarding these characteristics is formalized in NAB, using a scoring algorithm designed for streaming data. NAB evaluates detectors on a benchmark dataset with labeled, real-world time-series data. We present these components, and give results and analyses for several open source, commercially-used algorithms. The goal for NAB is to provide a standard, open source framework with which the research community can compare and evaluate different algorithms for detecting anomalies in streaming data.
AbstractList Much of the world's data is streaming, time-series data, where anomalies give significant information in critical situations, examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to process data in real-time, not batches, and learn while simultaneously making predictions. There are no benchmarks to adequately test and score the efficacy of real-time anomaly detectors. Here we propose the Numenta Anomaly Benchmark (NAB), which attempts to provide a controlled and repeatable environment of open-source tools to test and measure anomaly detection algorithms on streaming data. The perfect detector would detect all anomalies as soon as possible, trigger no false alarms, work with real-world time-series data across a variety of domains, and automatically adapt to changing statistics. Rewarding these characteristics is formalized in NAB, using a scoring algorithm designed for streaming data. NAB evaluates detectors on a benchmark dataset with labeled, real-world time-series data. We present these components, and give results and analyses for several open source, commercially-used algorithms. The goal for NAB is to provide a standard, open source framework with which the research community can compare and evaluate different algorithms for detecting anomalies in streaming data.
Author Lavin, Alexander
Ahmad, Subutai
Author_xml – sequence: 1
  givenname: Alexander
  surname: Lavin
  fullname: Lavin, Alexander
  email: alavin@numenta.com
  organization: Numenta, Inc., Redwood City, CA, USA
– sequence: 2
  givenname: Subutai
  surname: Ahmad
  fullname: Ahmad, Subutai
  email: sahmad@numenta.com
  organization: Numenta, Inc., Redwood City, CA, USA
BookMark eNo9jU9LwzAchiPowU2vXrzkC6Tmb5Mea51zUBVGPY80-XUNtql0mbBv70Dx9MLDw_Mu0GWcIiB0x2jGGC0eNtVrXWacMpUxyS7QgilaUMqNZtdou_q2w9GmEPd4C3YgTRgBl3Ea7XDCT5DApTBFXA77aQ6pHw-YENz0gN-OI8Rk_91HiK4f7fx5g646Oxzg9m-X6ON51VQvpH5fb6qyJoFrmQho3fkcjKFeOeU0ayXk1jBlzrgzxntmCwEeFEgPHW3B5Vy20nohvZOdWKL7324AgN3XHM7np52WXHIjxA9tjUyU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA.2015.141
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509002871
9781509002870
EndPage 44
ExternalDocumentID 7424283
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i274t-e77fd6e880d5c5c71b4e6a8158fd6f88dd1a93ede5e4def0bec624b4ad34dc4f3
IEDL.DBID RIE
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380483600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:36:31 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-e77fd6e880d5c5c71b4e6a8158fd6f88dd1a93ede5e4def0bec624b4ad34dc4f3
PageCount 7
ParticipantIDs ieee_primary_7424283
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)
PublicationTitleAbbrev ICMLA
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.1853328
Snippet Much of the world's data is streaming, time-series data, where anomalies give significant information in critical situations, examples abound in domains such...
SourceID ieee
SourceType Publisher
StartPage 38
SubjectTerms Algorithm design and analysis
anomaly detection
Benchmark testing
benchmarks
Detection algorithms
Detectors
Measurement
Real-time systems
streaming data
time-series data
Title Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta Anomaly Benchmark
URI https://ieeexplore.ieee.org/document/7424283
WOSCitedRecordID wos000380483600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2QePCkBozf6cGjlS3bbXePiBBNkBCihhvpbqdAhMXAYuK_d1o2GBMv3pqmzSQznUxfO2-GkBuZcjw3acyMtZoJEQUMo6JkUmkuwMQ68L0I3nqq349Ho2RQIbc7LgwA-OQzuHND_5dvltnGPZU1EMa5-mB7ZE8pueVqlXUYeZA0ntrPvZZL1orQ_fmvbik-WHQP_yfmiNR_WHd0sIsnx6QCeY0MO2U57nxCh3ipY46zQRG0L_T8iz5A4VOpctqaT5aI86eLNWWMovFp34vRu7X3KGC60Kv3Onntdl7aj6zsg8BmiBkLBkpZIwE9zURZlCmeCpA65lGM0zaOjeE6CcFABMKADdAssilSoU0oTCZseEKq-TKHU0ITCQhRUhk2Aytwo3ZspkzLRIFVIJIzUnP6GH9sS12MS1Wc_z19QQ6curfZHZekWqw2cEX2s89itl5de_t8A1xtlLs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEG4QTfRJDRh_2wcfrWys67ZHRAjEsRCChjfSrVcgwjAwTPzvvY4FY-KLb03T5pK7ttevve-OkHsR27huYp8prSXj3LUYekXBhCdtDsqXVl6L4C30osgfjYJ-iTzsuDAAkAefwaNp5n_5aplszFNZDWGcyQ-2R_ZdzuvWlq1VZGK0raDWbfbChgnXcvEAsH_VS8ndRfv4f4JOSPWHd0f7O49ySkqQVsigVSTkTid0gNc6ZlgbFGH7Qs6_6DNkeTBVShvzyRKR_nSxpoxRND-NcjFyN_YJBUwXcvVeJa_t1rDZYUUlBDZD1Jgx8DytBOBeU27iJp4dcxDSt10fu7XvK2XLwAEFLnAF2kLDiDqPuVQOVwnXzhkpp8sUzgkNBCBIiYVTtzTHidLwmRIpAg-0Bzy4IBWjj_HHNtnFuFDF5d_dd-SwM-yF47AbvVyRI6P6bazHNSlnqw3ckIPkM5utV7e5rb4BRkeYAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+14th+International+Conference+on+Machine+Learning+and+Applications+%28ICMLA%29&rft.atitle=Evaluating+Real-Time+Anomaly+Detection+Algorithms+--+The+Numenta+Anomaly+Benchmark&rft.au=Lavin%2C+Alexander&rft.au=Ahmad%2C+Subutai&rft.date=2015-12-01&rft.pub=IEEE&rft.spage=38&rft.epage=44&rft_id=info:doi/10.1109%2FICMLA.2015.141&rft.externalDocID=7424283