DeepFace: Closing the Gap to Human-Level Performance in Face Verification
In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a fa...
Gespeichert in:
| Veröffentlicht in: | 2014 IEEE Conference on Computer Vision and Pattern Recognition S. 1701 - 1708 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2014
|
| Schlagworte: | |
| ISSN: | 1063-6919, 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4, 000 identities. The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance. |
|---|---|
| AbstractList | In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4, 000 identities. The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance. |
| Author | Ranzato, Marc'Aurelio Taigman, Yaniv Ming Yang Wolf, Lior |
| Author_xml | – sequence: 1 givenname: Yaniv surname: Taigman fullname: Taigman, Yaniv organization: Facebook AI Res., Menlo Park, CA, USA – sequence: 2 surname: Ming Yang fullname: Ming Yang email: mingyang@fb.com organization: Facebook AI Res., Menlo Park, CA, USA – sequence: 3 givenname: Marc'Aurelio surname: Ranzato fullname: Ranzato, Marc'Aurelio email: ranzato@fb.com organization: Facebook AI Res., Menlo Park, CA, USA – sequence: 4 givenname: Lior surname: Wolf fullname: Wolf, Lior email: wolf@cs.tau.ac.il organization: Tel Aviv Univ., Tel Aviv, Israel |
| BookMark | eNpNT0tLw0AYXKWCtfboycsevaTut8-sN0ntAwoW0V7DJv1WF9JsTFLBf2-kHjzNDMwMM1dkVMcaCbkBNgNg9j7bbV9mnIGccc7OyNSaFKSxVgGk6pyMgWmRaAt29I9fkmnXhYJxbbRUQo_Jeo7YLFyJDzSrYhfqd9p_IF26hvaRro4HVycb_MKKbrH1sR10iTTU9DdDd9gGH0rXh1hfkwvvqg6nfzghb4un12yVbJ6X6-xxkwRuZJ_sUxx2lkpKw5TT3DuuUm8lFqjQlMJ7ZySgFlgMh4Td8z2maeEZAGLJvZiQu1Nv08bPI3Z9fghdiVXlaozHLgdtjOUSrBistydrQMS8acPBtd-5tsxq0OIHCY1doA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/CVPR.2014.220 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Agriculture Computer Science |
| EISBN | 9781479951185 1479951188 |
| EISSN | 1063-6919 |
| EndPage | 1708 |
| ExternalDocumentID | 6909616 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i274t-d8e147c544705a62fa258f94ebe5e7c3ffa741e63eb81439d2de88bf011eec2f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3964 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361555601095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Thu Sep 04 18:36:40 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i274t-d8e147c544705a62fa258f94ebe5e7c3ffa741e63eb81439d2de88bf011eec2f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1677924193 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6909616 proquest_miscellaneous_1677924193 |
| PublicationCentury | 2000 |
| PublicationDate | 20140601 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026764536 ssj0023720 ssj0003211698 |
| Score | 2.549144 |
| Snippet | In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1701 |
| SubjectTerms | Agriculture Alignment Computer vision Face Face recognition Facial Networks Neural networks Pattern recognition Representations Shape Solid modeling State of the art Three-dimensional displays Training |
| Title | DeepFace: Closing the Gap to Human-Level Performance in Face Verification |
| URI | https://ieeexplore.ieee.org/document/6909616 https://www.proquest.com/docview/1677924193 |
| WOSCitedRecordID | wos000361555601095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aCXalWsLyJ4NLrNZpOsN6lWhVKKaPFW9jGRguyWPvz9TtJte9CLtyWQsMxMJvP-AK4k2UAOv5wbjJHLNLA8TU3GowRzk5EIoa_NGfZ0v28-PuJBDa7XvTCI6IvP8MZ9-lx-XmYLFyq7JU8uVm21BVta62Wv1kp2hNJKRkvsbq-FQ_JsVLzOKAiHxuIznyrkKm7Hm3mbt53h4NUVeckb4WC_PcrKL9Xs35tu439_ugeHm8Y9Nlg_SftQw6IJu_ef02rCBjahUdmdrLrVM1paQTus1g7g5QFx0k0yvGOdr9LFExhZiuwpmbB5yXzkn_dcvREbbDoP2Lhgbg8bkljbKhh4CO_dx7fOM69QF_iYPNQ5zw22pc4iKXUQJUrYRETGxpK4HaHOQmsTskJQhZgaMrbiXOTEz9SSokDMhA2PoF6UBR4DC4NUBsT6EE1ARwq64jrXdJIyIrEyb8GBI91oshysMaqo1oLLFe1HJOwug5EUWC5mo7bSmhxGMjpP_t56CjuOkctarjOoz6cLPIft7Hs-nk0vvMT8ACblvQk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkhYusDzEe43EcQ2J49gON1QooO1WFWIrblEeY1QJJVUf_H7Gbtoelgu3yJKtaGY8nvcHcCnJBnL45dxgglzmgeV5bgoeZ1iagkQIfW1Ov6O7XfP6mvRW4PeiFwYRffEZXrlPn8sv62LqQmXX5MklKlSrsB5LKcJZt9ZceoTSSsYz9G6vhyPybVSyyCkIh8fic58q4ioJk-XEzetWv_fsyrzklXDA3x5n5T_l7F-c9vb3_nUH9pete6y3eJR-wgpWu7B1-zZqZmzgLmw3lidr7vWYlubgDvO1PXi6Qxy2swJvWOu9dhEFRrYie8iGbFIzH_vnHVdxxHrL3gM2qJjbw_ok2LYJB-7Dv_b9S-uRN7gLfEA-6oSXBkOpC6KxDuJMCZuJ2NhEEr9j1EVkbUZ2CKoIc0PmVlKKkjiaW1IViIWw0QGsVXWFh8CiIJcBMT9CE9CRgi65LjWdpIzIrCyPYM-RLh3ORmukDdWO4GJO-5TE3eUwsgrr6TgNldbkMpLZefz11l_w4_HlbyftPHX_nMCmY-qssusU1iajKZ7BRvExGYxH5156PgEq0cBQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=DeepFace%3A+Closing+the+Gap+to+Human-Level+Performance+in+Face+Verification&rft.au=Taigman%2C+Yaniv&rft.au=Ming+Yang&rft.au=Ranzato%2C+Marc%27Aurelio&rft.au=Wolf%2C+Lior&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1701&rft.epage=1708&rft_id=info:doi/10.1109%2FCVPR.2014.220&rft.externalDocID=6909616 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |