Convolutional Sparse Coding for Image Super-Resolution
Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately. These methods, however, ignore the consistency of pixels in overlapped patches, which is a strong constraint for image reconstruction. In this p...
Uloženo v:
| Vydáno v: | Proceedings / IEEE International Conference on Computer Vision s. 1823 - 1831 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2015
|
| Témata: | |
| ISSN: | 2380-7504 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately. These methods, however, ignore the consistency of pixels in overlapped patches, which is a strong constraint for image reconstruction. In this paper, we propose a convolutional sparse coding (CSC) based SR (CSC-SR) method to address the consistency issue. Our CSC-SR involves three groups of parameters to be learned: (i) a set of filters to decompose the low resolution (LR) image into LR sparse feature maps, (ii) a mapping function to predict the high resolution (HR) feature maps from the LR ones, and (iii) a set of filters to reconstruct the HR images from the predicted HR feature maps via simple convolution operations. By working directly on the whole image, the proposed CSC-SR algorithm does not need to divide the image into overlapped patches, and can exploit the image global correlation to produce more robust reconstruction of image local structures. Experimental results clearly validate the advantages of CSC over patch based SC in SR application. Compared with state-of-the-art SR methods, the proposed CSC-SR method achieves highly competitive PSNR results, while demonstrating better edge and texture preservation performance. |
|---|---|
| AbstractList | Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately. These methods, however, ignore the consistency of pixels in overlapped patches, which is a strong constraint for image reconstruction. In this paper, we propose a convolutional sparse coding (CSC) based SR (CSC-SR) method to address the consistency issue. Our CSC-SR involves three groups of parameters to be learned: (i) a set of filters to decompose the low resolution (LR) image into LR sparse feature maps, (ii) a mapping function to predict the high resolution (HR) feature maps from the LR ones, and (iii) a set of filters to reconstruct the HR images from the predicted HR feature maps via simple convolution operations. By working directly on the whole image, the proposed CSC-SR algorithm does not need to divide the image into overlapped patches, and can exploit the image global correlation to produce more robust reconstruction of image local structures. Experimental results clearly validate the advantages of CSC over patch based SC in SR application. Compared with state-of-the-art SR methods, the proposed CSC-SR method achieves highly competitive PSNR results, while demonstrating better edge and texture preservation performance. |
| Author | Deyu Meng Lei Zhang Wangmeng Zuo Qi Xie Xiangchu Feng Shuhang Gu |
| Author_xml | – sequence: 1 givenname: Shuhang surname: Gu fullname: Gu, Shuhang – sequence: 2 givenname: Wangmeng surname: Zuo fullname: Zuo, Wangmeng – sequence: 3 givenname: Qi surname: Xie fullname: Xie, Qi – sequence: 4 givenname: Deyu surname: Meng fullname: Meng, Deyu – sequence: 5 givenname: Xiangchu surname: Feng fullname: Feng, Xiangchu – sequence: 6 givenname: Lei surname: Zhang fullname: Zhang, Lei |
| BookMark | eNotzD1PwzAUhWGDQKItjEwsGVlS7rUd52ZEER-VKiFRYI2c-LoKSuMQN0j8eyq10xneR2cuLvrQsxC3CEtEKB5WZfm1lIDZUqI8E3PUJlekCoRzMZOKIM0z0FdiHuM3gCokmZkwZeh_Qzft29DbLtkMdoyclMG1_TbxYUxWO7vlZDMNPKbvHE_0Wlx620W-Oe1CfD4_fZSv6frtZVU-rtNW5nqfNpKglrbwjjMpvSebOdKFk-Qb75TJoT50SeRqwoYpc9pjXiM7XYNuarUQ98ffYQw_E8d9tWtjw11new5TrJDQgCFS6kDvjrRl5moY250d_6pcI2SmUP9P-lS5 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICCV.2015.212 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1467383910 9781467383912 |
| EISSN | 2380-7504 |
| EndPage | 1831 |
| ExternalDocumentID | 7410569 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i274t-c280b2a9fde522ff8a5d849d28fcfd3670b0b2288db81ce85d4f17b1ed4b04cb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 255 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380414100204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Jul 11 14:58:53 EDT 2025 Wed Aug 27 01:57:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i274t-c280b2a9fde522ff8a5d849d28fcfd3670b0b2288db81ce85d4f17b1ed4b04cb3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1816068833 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_7410569 proquest_miscellaneous_1816068833 |
| PublicationCentury | 2000 |
| PublicationDate | 20151201 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 20151201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | ICCV |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssib030089929 |
| Score | 2.4931047 |
| Snippet | Most of the previous sparse coding (SC) based super resolution (SR) methods partition the image into overlapped patches, and process each patch separately.... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1823 |
| SubjectTerms | Algorithms Coding Computer vision Consistency Convolution Convolutional codes Dictionaries Encoding Feature maps Image coding Image reconstruction Image resolution Surface layer Texture |
| Title | Convolutional Sparse Coding for Image Super-Resolution |
| URI | https://ieeexplore.ieee.org/document/7410569 https://www.proquest.com/docview/1816068833 |
| WOSCitedRecordID | wos000380414100204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UeujJtlpqX2yhx67msWY351CpUESwFW9hsw8Q2ihq_P3dSaIe2ktvgexAmJ3MN7vz-ACepRTK6EBT37eMMgcIFJNh1LfSY77kmSrHMczf-WQiFot42oCXYy-MMaYsPjN9fCxz-XqlCrwqG3CsSYziJjQ5j6perYPthB7mrxDqKy_sYF9Ep5mag3GSzLGQa9gPkHyyZFL55X5LTBm1__c1F9A9NeeR6RF2LqFh8ito19Ekqf_VbQcit35fG5b8IrO1O8IakqxQirhQlYy_nS8hs2JtNhRv8aulXfgcvX4kb7RmSaBLd6LcURUILwtkbLVxsZS1Qg61YLEOhFVW43y2zL0PhNCZ8JGkVDPr88w3mmUeU1l4Da18lZsbIDaQTHEXgnHLmeVahEYwy2xomLBOrAcdVEO6rgZhpLUGevB00GPqjBMzDjI3q2KbuvAhQlabMLz9W_QOznFTqvqQe2jtNoV5gDO13y23m8dyh38A6sanYg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmugJFYz4XBOPLrTbpd2eGwlEJCQg4dZs95GQaEuA8vvdbSsc9OKtSXeSZnY63-zO4wN45pwJJYnErqsppgYQsE2GYVdzh7o8SEQxjmE-CsZjtliEkxq87HthlFJF8Znq2Mcily8zkdursm5gaxL98AiOe5QSp-zW-rEez7EZLAv2pR82wM_8w1TN7jCK5raUq9chln6y4FL55YALVOk3_vc959A6tOehyR54LqCm0ktoVPEkqv7WTRN8s35XmRb_RNOVOcQqFGVWCplgFQ2_jDdB03yl1tje45dLW_DRf51FA1zxJOClOVNusSDMSQgPtVQmmtKa8Z5kNJSEaaGlndCWmPeEMZkw19KUSqrdIHGVpIlDReJdQT3NUnUNSBNORWCCsEAHVAeSeYpRTbWnKNNGrA1Nq4Z4VY7CiCsNtOHpR4-xMU-bc-CpyvJNbAII3_LaeN7N36KPcDqYvY_i0XD8dgtndoPKapE7qG_XubqHE7HbLjfrh2K3vwHNOaqp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Convolutional+Sparse+Coding+for+Image+Super-Resolution&rft.au=Shuhang+Gu&rft.au=Wangmeng+Zuo&rft.au=Qi+Xie&rft.au=Deyu+Meng&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=1823&rft.epage=1831&rft_id=info:doi/10.1109%2FICCV.2015.212&rft.externalDocID=7410569 |