The Role of Context for Object Detection and Semantic Segmentation in the Wild

In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it conta...

Full description

Saved in:
Bibliographic Details
Published in:2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 891 - 898
Main Authors: Mottaghi, Roozbeh, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Fidler, Sanja, Urtasun, Raquel, Yuille, Alan
Format: Conference Proceeding Journal Article
Language:English
Published: IEEE 01.06.2014
Subjects:
ISSN:1063-6919, 1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it contains 520 additional classes for semantic segmentation and object detection. Our analysis shows that nearest neighbor based approaches perform poorly on semantic segmentation of contextual classes, showing the variability of PASCAL imagery. Furthermore, improvements of existing contextual models for detection is rather modest. In order to push forward the performance in this difficult scenario, we propose a novel deformable part-based model, which exploits both local context around each candidate detection as well as global context at the level of the scene. We show that this contextual reasoning significantly helps in detecting objects at all scales.
AbstractList In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it contains 520 additional classes for semantic segmentation and object detection. Our analysis shows that nearest neighbor based approaches perform poorly on semantic segmentation of contextual classes, showing the variability of PASCAL imagery. Furthermore, improvements of existing contextual models for detection is rather modest. In order to push forward the performance in this difficult scenario, we propose a novel deformable part-based model, which exploits both local context around each candidate detection as well as global context at the level of the scene. We show that this contextual reasoning significantly helps in detecting objects at all scales.
In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it contains 520 additional classes for semantic segmentation and object detection. Our analysis shows that nearest neighbor based approaches perform poorly on semantic segmentation of contextual classes, showing the variability of PASCAL imagery. Furthermore, improvements of exist ing contextual models for detection is rather modest. In order to push forward the performance in this difficult scenario, we propose a novel deformable part-based model, which exploits both local context around each candidate detection as well as global context at the level of the scene. We show that this contextual reasoning significantly helps in detecting objects at all scales.
Author Mottaghi, Roozbeh
Nam-Gyu Cho
Urtasun, Raquel
Yuille, Alan
Xianjie Chen
Seong-Whan Lee
Xiaobai Liu
Fidler, Sanja
Author_xml – sequence: 1
  givenname: Roozbeh
  surname: Mottaghi
  fullname: Mottaghi, Roozbeh
– sequence: 2
  surname: Xianjie Chen
  fullname: Xianjie Chen
– sequence: 3
  surname: Xiaobai Liu
  fullname: Xiaobai Liu
– sequence: 4
  surname: Nam-Gyu Cho
  fullname: Nam-Gyu Cho
– sequence: 5
  surname: Seong-Whan Lee
  fullname: Seong-Whan Lee
– sequence: 6
  givenname: Sanja
  surname: Fidler
  fullname: Fidler, Sanja
– sequence: 7
  givenname: Raquel
  surname: Urtasun
  fullname: Urtasun, Raquel
– sequence: 8
  givenname: Alan
  surname: Yuille
  fullname: Yuille, Alan
BookMark eNpNUD1PwzAUNKhIlNKRicUjS8BOHDtvROFTqigqBcbITp7BKLFL4krw74koA9Pd6d2dTu-ITHzwSMgJZ-ecM7goXx5X5ynjYpSwR-agCi4UQM55ke-TKWcySyRwmPzjh2Q-DM6wVCop8kxOycP6HekqtEiDpWXwEb8itaGnS_OBdaRXGEdwwVPtG_qEnfbR1SN569BH_Xtxnsax5dW1zTE5sLodcP6HM_J8c70u75LF8va-vFwkLlUiJoDjcAt5nppCWtNAXshGWatkAwY0FJkFq43QBmtmmcxTKQo5pozIDag6m5GzXe-mD59bHGLVuaHGttUew3aouFQKuGCSj9bTndUhYrXpXaf770oCG18lsh9vsV-C
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.119
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 898
ExternalDocumentID 6909514
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-9e014f9552b86fbd9586d7ff76d9b9a983f9fab4abec0f065264869e0b45b97c3
IEDL.DBID RIE
ISICitedReferencesCount 967
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361555600113&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Mon Jul 21 10:52:25 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-9e014f9552b86fbd9586d7ff76d9b9a983f9fab4abec0f065264869e0b45b97c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677914061
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677914061
ieee_primary_6909514
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.5344
Snippet In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 891
SubjectTerms Buildings
Categories
Communities
Computer vision
Conferences
Context
Context modeling
Image segmentation
Object detection
Pascal (programming language)
Pattern recognition
Segmentation
Semantics
State of the art
Vegetation
Title The Role of Context for Object Detection and Semantic Segmentation in the Wild
URI https://ieeexplore.ieee.org/document/6909514
https://www.proquest.com/docview/1677914061
WOSCitedRecordID wos000361555600113&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT8IwtAHiwRMqGPErNfHohLF-rGeUeEJC1HBb2rU1S2QzMIw_39dug4NevLUv6dK89_Y--r4QurWubVgYhYHQkQyAQ3SgGJWBAH1iiZSaauKHTfDZLF4uxbyF7na1MMYYn3xm7t3Sx_J1kW7dU9kQPDkwCEgbtTnnVa1Wwztjxhmh1exuL4UjuAMTu4jC2E1j8ZFPFgVMhGLfb3M4eZsvXJIXga2op6z8Es1e30y7_7vpEervC_fwfKeSjlHL5CeoW1uauP6PNwBqhjk0sB6aAcPgRfFhcGGx71n1XWKwaPGzck81-MGUPmsrxzKHT5kVkCRLYfG-qsuXcpzlGOxJDJJG99Hr9PFl8hTUwxaCDBzTMhAGEGAFpWMVM6u0oDHT3FrOtFBCijiywkpFJBB9ZMFwcalxDE4pQpXgaXSKOnmRmzOExzxUMcAMVSGRZAQbDo4woSQNXb-yAeo5jCWfVT-NpEbWAN00KE-Ax13gQuam2G6SkHEuQmd6nP999AIdOvpVKVyXqFOut-YKHaRfZbZZX3tG-QHvurj6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsQwcPAFevKNbyN4tGraPJqzDxR1XUTFW0maRBbcVtyu-PlOst31oBdvyUBKmJnOI_MCOPShbRjNaKJsphPkEJsYwXWiUJ94prXllsVhE7LTyV9eVHcKjia1MM65mHzmjsMyxvJtXQ7DU9kJenJoELBpmOWMpXRUrTXmnlRIwfhoeneUwxneQqhJTCEN81hi7FNkiVBU_XTcPDl77j6ENC-GW9XOWfklnKPGuVz8312XYO2ndI90J0ppGaZctQKLra1J2j95gKDxOIcxbBU6yDLkoX5zpPYkdq36agjatOTehMcacu6amLdVEV3hp1wfidIrcfHabwuYKtKrCFqUBGWNXYOny4vHs6ukHbeQ9NA1bRLlEAFecZ6aXHhjFc-Fld5LYZVRWuWZV14bppHspx5Nl5AcJ_CUYdwoWWbrMFPVldsAkkpqcoQ5bijT7BQ3El1hxllJQ8eyTVgNGCveRx01ihZZm3AwRnmBXB5CF7py9XBQUCGlosH42Pr76D7MXz3e3Ra3152bbVgItBwldO3ATPMxdLswV342vcHHXmSab76jvEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=The+Role+of+Context+for+Object+Detection+and+Semantic+Segmentation+in+the+Wild&rft.au=Mottaghi%2C+Roozbeh&rft.au=Xianjie+Chen&rft.au=Xiaobai+Liu&rft.au=Nam-Gyu+Cho&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=891&rft.epage=898&rft_id=info:doi/10.1109%2FCVPR.2014.119&rft.externalDocID=6909514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon