Exploring multi-channel features for denoising-autoencoder-based speech enhancement

This paper investigates a multi-channel denoising autoencoder (DAE)-based speech enhancement approach. In recent years, deep neural network (DNN)-based monaural speech enhancement and robust automatic speech recognition (ASR) approaches have attracted much attention due to their high performance. Al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 116 - 120
Hlavní autoři: Araki, Shoko, Hayashi, Tomoki, Delcroix, Marc, Fujimoto, Masakiyo, Takeda, Kazuya, Nakatani, Tomohiro
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2015
Témata:
ISSN:1520-6149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper investigates a multi-channel denoising autoencoder (DAE)-based speech enhancement approach. In recent years, deep neural network (DNN)-based monaural speech enhancement and robust automatic speech recognition (ASR) approaches have attracted much attention due to their high performance. Although multi-channel speech enhancement usually outperforms single channel approaches, there has been little research on the use of multi-channel processing in the context of DAE. In this paper, we explore the use of several multi-channel features as DAE input to confirm whether multi-channel information can improve performance. Experimental results show that certain multi-channel features outperform both a monaural DAE and a conventional time-frequency-mask-based speech enhancement method.
AbstractList This paper investigates a multi-channel denoising autoencoder (DAE)-based speech enhancement approach. In recent years, deep neural network (DNN)-based monaural speech enhancement and robust automatic speech recognition (ASR) approaches have attracted much attention due to their high performance. Although multi-channel speech enhancement usually outperforms single channel approaches, there has been little research on the use of multi-channel processing in the context of DAE. In this paper, we explore the use of several multi-channel features as DAE input to confirm whether multi-channel information can improve performance. Experimental results show that certain multi-channel features outperform both a monaural DAE and a conventional time-frequency-mask-based speech enhancement method.
Author Araki, Shoko
Hayashi, Tomoki
Fujimoto, Masakiyo
Takeda, Kazuya
Nakatani, Tomohiro
Delcroix, Marc
Author_xml – sequence: 1
  givenname: Shoko
  surname: Araki
  fullname: Araki, Shoko
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 2
  givenname: Tomoki
  surname: Hayashi
  fullname: Hayashi, Tomoki
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 3
  givenname: Marc
  surname: Delcroix
  fullname: Delcroix, Marc
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 4
  givenname: Masakiyo
  surname: Fujimoto
  fullname: Fujimoto, Masakiyo
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
– sequence: 5
  givenname: Kazuya
  surname: Takeda
  fullname: Takeda, Kazuya
  organization: Dept. of Media Sci., Nagoya Univ., Nagoya, Japan
– sequence: 6
  givenname: Tomohiro
  surname: Nakatani
  fullname: Nakatani, Tomohiro
  organization: NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan
BookMark eNotkM1qwzAQhFVIoUmaJ8jFLyBXa6281rGE9AcCLaQ9B0leNy6OHCwH2revoTnNHOYbhlmIWewjC7EGlQMo-_C6edzv3_NCgckJiCzqG7EALEmX1hLNxBxMoWQJaO_EKqVvpRRQSUg4F_vtz7nrhzZ-ZadLN7YyHF2M3GUNu_EycMqafshqjn2bppB0l7HnGPqaB-ld4jpLZ-ZwzDhOYOATx_Fe3DauS7y66lJ8Pm0_Ni9y9_Y8rd3JtiAcpVUBKlMX5H2woQGPBguF5ENpTKMqxHJyrvIG6kY5qwm90gEcGsOWtV6K9X9vy8yH89Ce3PB7uH6g_wDp1VOP
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2015.7177943
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1467369977
9781467369978
EndPage 120
ExternalDocumentID 7177943
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i274t-90c185d27bbc9cf1b4542047bc655f08446c65a8b51df0a9374b03c1a455e9e33
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427402900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6149
IngestDate Wed Aug 27 02:20:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-90c185d27bbc9cf1b4542047bc655f08446c65a8b51df0a9374b03c1a455e9e33
PageCount 5
ParticipantIDs ieee_primary_7177943
PublicationCentury 2000
PublicationDate 20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 20150401
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001767474
ssj0008748
Score 2.2847087
Snippet This paper investigates a multi-channel denoising autoencoder (DAE)-based speech enhancement approach. In recent years, deep neural network (DNN)-based...
SourceID ieee
SourceType Publisher
StartPage 116
SubjectTerms Artificial neural networks
Deep learning
denoising autoencoder
Filter banks
multi-channel noise suppression
Noise reduction
PASCAL 'CHiME' challenge
Testing
Training
Title Exploring multi-channel features for denoising-autoencoder-based speech enhancement
URI https://ieeexplore.ieee.org/document/7177943
WOSCitedRecordID wos000427402900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPbSXPrT0TQ49NprdTczusUilvYhgC94kjwkKZRVd-_ubiYu20EtvIYclZMJ8M7PffEPII_jg8jJlGEDBmfDSM50mjgUsDk9aJ85bHodNqNEon06LcYM87XthACCSz6CLy_gv3y3tFktlvZB6oJ5ZkzSV6u96tQ71FFSlwVCm9sK5ipOzAjxheiSKWnEo4UXvbfA8mYyR1iW79Sd_zVaJ0DI8_d-hzkjn0KNHx3v0OScNKC_IyQ95wTaZ7Al2NPIGGXb5lvBJPUQ5zw0NESsNjme5wIoB09tqibqWDtYM0c3RzQrAzimUc3wceJAO-Ri-vA9eWT1EgS1CwlmxgtsAyS5VxtjC-sQIKVIulLF9KT3PQzoYVjo3MtiF6xCtCMMzm2ghJRSQZZekVS5LuCJUpAC5AO-FyESagpHWKe2dcg51BfU1aeP1zFY7nYxZfTM3f2_fkmO0wI4Fc0da1XoL9-TIflWLzfohGvcbFgekXw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLj1Z8m4NH0-4jcXePUiwt1lJohd5KHhNakN3Sh7_fJF1aBS_eQg4hzIT5ZiYz3wA8orEmL04kRcwCygw3VEShphaL7ZMWoTYq8MMmkn4_HY-zQQWetr0wiOiLz7Dhlv4vXxdq7VJlTRt6OD6zPdjnjEXBpltrl1FxvDTOmSntcJr42VkWoFyAxLKScygMsma39TIcDlxhF2-Uh_6aruLBpX3yv2udQn3XpUcGW_w5gwrm53D8g2CwBsNtiR3xlYPU9fnm-EkMekLPJbE-K7Gmp5i5nAEV61XhmC01LqjDN02Wc0Q1JZhP3fNwF6nDR_t11OrQcowCndmQc0WzQFlQ1lEipcqUCSXjVngskeqZcxOkNiC0K5FKbjUTCOuvMBnEKhSMc8wwji-gmhc5XgJhEWLK0BjGYhZFKLnSiTA60doxC4orqDnxTOYbpoxJKZnrv7cf4LAzeu9Net3-2w0cOW1samJuobparPEODtTXarZc3HtFfwPTDqem
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Exploring+multi-channel+features+for+denoising-autoencoder-based+speech+enhancement&rft.au=Araki%2C+Shoko&rft.au=Hayashi%2C+Tomoki&rft.au=Delcroix%2C+Marc&rft.au=Fujimoto%2C+Masakiyo&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1520-6149&rft.spage=116&rft.epage=120&rft_id=info:doi/10.1109%2FICASSP.2015.7177943&rft.externalDocID=7177943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon