Detecting Negation Scopes for Financial News Sentiment Using Reinforcement Learning
Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are negated. So far, related research commonly utilizes rule-based algorithms to detect negated sentence fragments, named negation scopes. Nonethele...
Uloženo v:
| Vydáno v: | 2016 49th Hawaii International Conference on System Sciences (HICSS) s. 1164 - 1173 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2016
|
| Témata: | |
| ISSN: | 1530-1605, 1530-1605 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are negated. So far, related research commonly utilizes rule-based algorithms to detect negated sentence fragments, named negation scopes. Nonetheless, these methods involve certain limitations when encountering complex language or particularities of the chosen prose. As an alternative, reinforcement learning offers an opportunity to learn suitable negation classifications through trial-and-error experience. This method tries to replicate human-like learning and thus appears well-suited for natural language processing. Its episode-based and flexible structure allows for the handling of even highly complex sentences. Our results provide evidence that reinforcement learning can outperform rule-based approaches from the related literature. The best performing implementation reveals a predictive accuracy of up to 76.37% on a manually-labeled dataset, exceeding the predictive accuracy of rule-based approaches by 2.55 %. When utilizing the already trained reinforcement learning implementation for sentiment analysis, we find a potential subjectivity bias that limits the predictive performance of forecasting stock market returns. |
|---|---|
| AbstractList | Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are negated. So far, related research commonly utilizes rule-based algorithms to detect negated sentence fragments, named negation scopes. Nonetheless, these methods involve certain limitations when encountering complex language or particularities of the chosen prose. As an alternative, reinforcement learning offers an opportunity to learn suitable negation classifications through trial-and-error experience. This method tries to replicate human-like learning and thus appears well-suited for natural language processing. Its episode-based and flexible structure allows for the handling of even highly complex sentences. Our results provide evidence that reinforcement learning can outperform rule-based approaches from the related literature. The best performing implementation reveals a predictive accuracy of up to 76.37% on a manually-labeled dataset, exceeding the predictive accuracy of rule-based approaches by 2.55 %. When utilizing the already trained reinforcement learning implementation for sentiment analysis, we find a potential subjectivity bias that limits the predictive performance of forecasting stock market returns. |
| Author | Neumann, Dirk Feuerriegel, Stefan Prollochs, Nicolas |
| Author_xml | – sequence: 1 givenname: Nicolas surname: Prollochs fullname: Prollochs, Nicolas email: nicolas.proellochs@is.uni-freiburg.de organization: Univ. of Freiburg, Freiburg, Germany – sequence: 2 givenname: Stefan surname: Feuerriegel fullname: Feuerriegel, Stefan email: stefan.feuerriegel@is.uni-freiburg.de organization: Univ. of Freiburg, Freiburg, Germany – sequence: 3 givenname: Dirk surname: Neumann fullname: Neumann, Dirk email: dirk.neumann@is.uni-freiburg.de organization: Univ. of Freiburg, Freiburg, Germany |
| BookMark | eNpNj71PwzAQxQ0qEm1hZWHJyJJyvvgjGVFpaaUIJELnyHEvlVHqlDgV4r8nUAaWd0_vfnfSm7CRbz0xdsNhxjlk96v1vChmCFzNuNBnbAJaZVIqDfycjblMIOYK5Oifv2STEN4BEARXY1Y8Uk-2d34XPdPO9K71UWHbA4Wobrto6bzx1plm2H6GqCDfu_0g0Sb8nLyS8wNm6TfLyXR-iK_YRW2aQNd_c8o2y8XbfBXnL0_r-UMeO9Sij3VmkHSirKzSbS2I1FYDZZhpkQnAtJJAqTYGailJUWVIIYpao5SVVSCSKbs7_T107ceRQl_uXbDUNMZTewwlT4fCCaaAA3p7Qh0RlYfO7U33VWqBOkGVfAOKu2Bu |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/HICSS.2016.147 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 0769556701 9780769556703 |
| EISSN | 1530-1605 |
| EndPage | 1173 |
| ExternalDocumentID | 7427326 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i274t-79a2e736c5b8df4ee6d70e9297494028b50e87aa0f55e6ebae6224f7255bc6043 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432711501032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-1605 |
| IngestDate | Fri Jul 11 12:06:33 EDT 2025 Wed Aug 27 02:04:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i274t-79a2e736c5b8df4ee6d70e9297494028b50e87aa0f55e6ebae6224f7255bc6043 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1816032802 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1816032802 ieee_primary_7427326 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 49th Hawaii International Conference on System Sciences (HICSS) |
| PublicationTitleAbbrev | HICSS |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020416 ssj0001968150 |
| Score | 2.149983 |
| Snippet | Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1164 |
| SubjectTerms | Conferences Flexible structures Hidden Markov models Learning Learning (artificial intelligence) Manuals Natural language processing News Pragmatics Raw materials Reinforcement Sentences Sentiment analysis Stock markets |
| Title | Detecting Negation Scopes for Financial News Sentiment Using Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/7427326 https://www.proquest.com/docview/1816032802 |
| WOSCitedRecordID | wos000432711501032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aCXaluxvljBo7Gb125yrpYKUopR6C3sJpPSS1r68Pc7u01aQS_elpAlYWZ33vMNwEPgR3nmCe2E2pdOEOfS0dqLnDAscm3AXlRoG4Xf5HgcTafxpAGP-14YRLTFZ_hkljaXny-yrQmV9cmNk2RuHMGRlGLXq3WIp8Qick2GrnK2eGDHntKF5o5LNnsF2OjyuD96HSSJqeoSJCfqsSq_ZLFVMMPW_37tDLqHTj022eugc2hg2YZWPaqBVTe3Dac_cAc7kDyjyR3Qmo1xZnlDry6WuGZkw7JhjcLBjAhkiSkoMp9ntr6AvaNFW81sYJFVAK2zLnwOXz4GI6earuDMyRPdODJWHkpfZKGO8iJAFLnkSNaSDGJyKiMdcoykUrwIQxSoFQpS94UkH0Rnggf-BTTLRYmXwAosROz6uTLwf1pJYn8mPM0lPUby0HrQMRRLlzsAjbQiVg_ua5KndKhNpkKVuNiuUzI7hAH6497V31uv4cTwbxcLuYHmZrXFWzjOvjbz9erOnoxvN9y3iQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmqgXFDDic008Wlna7m57RglEJEQw4dZ02ynhAoSHv9_ZpYCJXrxtmm7azM7Oe74BePS9IE1cqR2hPeX4Yaocrd3AESJLtQF7iYVtFO6qXi8YjcJ-AZ52vTCIaIvP8NksbS4_nSVrEyqrkxunyNw4gEPh-y7fdGvtIyqhDBomR5e7W9y3g0_pSnOnQVZ7DtnY4GG93WkOBqauS5Kk2A5W-SWNrYpplf73c2dQ3ffqsf5OC51DAadlKG2HNbD87pbh9AfyYAUGL2iyB7RmPRzb06FXZ3NcMrJiWWuLw8GMEGQDU1JkPs9shQH7QIu3mtjQIsshWsdV-Gy9DpttJ5-v4EzIF105KoxdVJ5MhA7SzEeUqeJI9pLyQ3IrAy04BiqOeSYEStQxSlL4mSIvRCeS-94FFKezKV4CyzCTYcNLYwMAqGNFDJBIV3NFj5F8tBpUDMWi-QZCI8qJVYOHLckjYmuTq4inOFsvIzI8pIH64-7V31vv4bg9fO9G3U7v7RpOzFluIiM3UFwt1ngLR8nXarJc3Fku-Qbwp7rQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+49th+Hawaii+International+Conference+on+System+Sciences+%28HICSS%29&rft.atitle=Detecting+Negation+Scopes+for+Financial+News+Sentiment+Using+Reinforcement+Learning&rft.au=Prollochs%2C+Nicolas&rft.au=Feuerriegel%2C+Stefan&rft.au=Neumann%2C+Dirk&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=1530-1605&rft.eissn=1530-1605&rft.spage=1164&rft.epage=1173&rft_id=info:doi/10.1109%2FHICSS.2016.147&rft.externalDocID=7427326 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-1605&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-1605&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-1605&client=summon |