Detecting Negation Scopes for Financial News Sentiment Using Reinforcement Learning

Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are negated. So far, related research commonly utilizes rule-based algorithms to detect negated sentence fragments, named negation scopes. Nonethele...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 49th Hawaii International Conference on System Sciences (HICSS) s. 1164 - 1173
Hlavní autoři: Prollochs, Nicolas, Feuerriegel, Stefan, Neumann, Dirk
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2016
Témata:
ISSN:1530-1605, 1530-1605
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are negated. So far, related research commonly utilizes rule-based algorithms to detect negated sentence fragments, named negation scopes. Nonetheless, these methods involve certain limitations when encountering complex language or particularities of the chosen prose. As an alternative, reinforcement learning offers an opportunity to learn suitable negation classifications through trial-and-error experience. This method tries to replicate human-like learning and thus appears well-suited for natural language processing. Its episode-based and flexible structure allows for the handling of even highly complex sentences. Our results provide evidence that reinforcement learning can outperform rule-based approaches from the related literature. The best performing implementation reveals a predictive accuracy of up to 76.37% on a manually-labeled dataset, exceeding the predictive accuracy of rule-based approaches by 2.55 %. When utilizing the already trained reinforcement learning implementation for sentiment analysis, we find a potential subjectivity bias that limits the predictive performance of forecasting stock market returns.
AbstractList Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are negated. So far, related research commonly utilizes rule-based algorithms to detect negated sentence fragments, named negation scopes. Nonetheless, these methods involve certain limitations when encountering complex language or particularities of the chosen prose. As an alternative, reinforcement learning offers an opportunity to learn suitable negation classifications through trial-and-error experience. This method tries to replicate human-like learning and thus appears well-suited for natural language processing. Its episode-based and flexible structure allows for the handling of even highly complex sentences. Our results provide evidence that reinforcement learning can outperform rule-based approaches from the related literature. The best performing implementation reveals a predictive accuracy of up to 76.37% on a manually-labeled dataset, exceeding the predictive accuracy of rule-based approaches by 2.55 %. When utilizing the already trained reinforcement learning implementation for sentiment analysis, we find a potential subjectivity bias that limits the predictive performance of forecasting stock market returns.
Author Neumann, Dirk
Feuerriegel, Stefan
Prollochs, Nicolas
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Prollochs
  fullname: Prollochs, Nicolas
  email: nicolas.proellochs@is.uni-freiburg.de
  organization: Univ. of Freiburg, Freiburg, Germany
– sequence: 2
  givenname: Stefan
  surname: Feuerriegel
  fullname: Feuerriegel, Stefan
  email: stefan.feuerriegel@is.uni-freiburg.de
  organization: Univ. of Freiburg, Freiburg, Germany
– sequence: 3
  givenname: Dirk
  surname: Neumann
  fullname: Neumann, Dirk
  email: dirk.neumann@is.uni-freiburg.de
  organization: Univ. of Freiburg, Freiburg, Germany
BookMark eNpNj71PwzAQxQ0qEm1hZWHJyJJyvvgjGVFpaaUIJELnyHEvlVHqlDgV4r8nUAaWd0_vfnfSm7CRbz0xdsNhxjlk96v1vChmCFzNuNBnbAJaZVIqDfycjblMIOYK5Oifv2STEN4BEARXY1Y8Uk-2d34XPdPO9K71UWHbA4Wobrto6bzx1plm2H6GqCDfu_0g0Sb8nLyS8wNm6TfLyXR-iK_YRW2aQNd_c8o2y8XbfBXnL0_r-UMeO9Sij3VmkHSirKzSbS2I1FYDZZhpkQnAtJJAqTYGailJUWVIIYpao5SVVSCSKbs7_T107ceRQl_uXbDUNMZTewwlT4fCCaaAA3p7Qh0RlYfO7U33VWqBOkGVfAOKu2Bu
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/HICSS.2016.147
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 0769556701
9780769556703
EISSN 1530-1605
EndPage 1173
ExternalDocumentID 7427326
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-79a2e736c5b8df4ee6d70e9297494028b50e87aa0f55e6ebae6224f7255bc6043
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432711501032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-1605
IngestDate Fri Jul 11 12:06:33 EDT 2025
Wed Aug 27 02:04:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-79a2e736c5b8df4ee6d70e9297494028b50e87aa0f55e6ebae6224f7255bc6043
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1816032802
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1816032802
ieee_primary_7427326
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle 2016 49th Hawaii International Conference on System Sciences (HICSS)
PublicationTitleAbbrev HICSS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020416
ssj0001968150
Score 2.149983
Snippet Applying natural language processing to the domain of financial news requires robust methods that process all sentences correctly, including those that are...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1164
SubjectTerms Conferences
Flexible structures
Hidden Markov models
Learning
Learning (artificial intelligence)
Manuals
Natural language processing
News
Pragmatics
Raw materials
Reinforcement
Sentences
Sentiment analysis
Stock markets
Title Detecting Negation Scopes for Financial News Sentiment Using Reinforcement Learning
URI https://ieeexplore.ieee.org/document/7427326
https://www.proquest.com/docview/1816032802
WOSCitedRecordID wos000432711501032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aCXaluxvljBo7Gb125yrpYKUopR6C3sJpPSS1r68Pc7u01aQS_elpAlYWZ33vMNwEPgR3nmCe2E2pdOEOfS0dqLnDAscm3AXlRoG4Xf5HgcTafxpAGP-14YRLTFZ_hkljaXny-yrQmV9cmNk2RuHMGRlGLXq3WIp8Qick2GrnK2eGDHntKF5o5LNnsF2OjyuD96HSSJqeoSJCfqsSq_ZLFVMMPW_37tDLqHTj022eugc2hg2YZWPaqBVTe3Dac_cAc7kDyjyR3Qmo1xZnlDry6WuGZkw7JhjcLBjAhkiSkoMp9ntr6AvaNFW81sYJFVAK2zLnwOXz4GI6earuDMyRPdODJWHkpfZKGO8iJAFLnkSNaSDGJyKiMdcoykUrwIQxSoFQpS94UkH0Rnggf-BTTLRYmXwAosROz6uTLwf1pJYn8mPM0lPUby0HrQMRRLlzsAjbQiVg_ua5KndKhNpkKVuNiuUzI7hAH6497V31uv4cTwbxcLuYHmZrXFWzjOvjbz9erOnoxvN9y3iQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmqgXFDDic008Wlna7m57RglEJEQw4dZ02ynhAoSHv9_ZpYCJXrxtmm7azM7Oe74BePS9IE1cqR2hPeX4Yaocrd3AESJLtQF7iYVtFO6qXi8YjcJ-AZ52vTCIaIvP8NksbS4_nSVrEyqrkxunyNw4gEPh-y7fdGvtIyqhDBomR5e7W9y3g0_pSnOnQVZ7DtnY4GG93WkOBqauS5Kk2A5W-SWNrYpplf73c2dQ3ffqsf5OC51DAadlKG2HNbD87pbh9AfyYAUGL2iyB7RmPRzb06FXZ3NcMrJiWWuLw8GMEGQDU1JkPs9shQH7QIu3mtjQIsshWsdV-Gy9DpttJ5-v4EzIF105KoxdVJ5MhA7SzEeUqeJI9pLyQ3IrAy04BiqOeSYEStQxSlL4mSIvRCeS-94FFKezKV4CyzCTYcNLYwMAqGNFDJBIV3NFj5F8tBpUDMWi-QZCI8qJVYOHLckjYmuTq4inOFsvIzI8pIH64-7V31vv4bg9fO9G3U7v7RpOzFluIiM3UFwt1ngLR8nXarJc3Fku-Qbwp7rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+49th+Hawaii+International+Conference+on+System+Sciences+%28HICSS%29&rft.atitle=Detecting+Negation+Scopes+for+Financial+News+Sentiment+Using+Reinforcement+Learning&rft.au=Prollochs%2C+Nicolas&rft.au=Feuerriegel%2C+Stefan&rft.au=Neumann%2C+Dirk&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=1530-1605&rft.eissn=1530-1605&rft.spage=1164&rft.epage=1173&rft_id=info:doi/10.1109%2FHICSS.2016.147&rft.externalDocID=7427326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-1605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-1605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-1605&client=summon