Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 IEEE Conference on Computer Vision and Pattern Recognition s. 580 - 587
Hlavní autoři: Girshick, Ross, Donahue, Jeff, Darrell, Trevor, Malik, Jitendra
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2014
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
AbstractList Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
Author Malik, Jitendra
Girshick, Ross
Donahue, Jeff
Darrell, Trevor
Author_xml – sequence: 1
  givenname: Ross
  surname: Girshick
  fullname: Girshick, Ross
  email: rbg@eecs.berkeley.edu
– sequence: 2
  givenname: Jeff
  surname: Donahue
  fullname: Donahue, Jeff
  email: jdonahue@eecs.berkeley.edu
– sequence: 3
  givenname: Trevor
  surname: Darrell
  fullname: Darrell, Trevor
  email: trevor@eecs.berkeley.edu
– sequence: 4
  givenname: Jitendra
  surname: Malik
  fullname: Malik, Jitendra
  email: malik@eecs.berkeley.edu
BookMark eNpNjj1PwzAYhA0qEqV0Y2PxyJLi1_FHPFaFUqRKrcrHGjnOG2rUJMVxBv49QWVgutM9p9NdkVHTNkjIDbAZADP3i_ftbsYZiFkGZ2RqdAZCGyMBMnlOxsBUmigDZvTPX5Jp1_mCcaWVkKkak-3Ouz1doo19QLryGGxwe48drdpA5871wUakm-ITXaQPGAfxbUNtU9IXrG0TvRvMR41NtL_kmlxU9tDh9E8n5G35-LpYJevN0_Nivk481yImQnNUurCaZ7ow1fC9SnlRpKWtSqcALK8El06VQ2pQSMzEwDLQZQalTDGdkLvT7jG0Xz12Ma995_BwsA22fZeD0towJpgeqrenqkfE_Bh8bcN3rgwzQsv0B4ZjYJU
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.81
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 587
ExternalDocumentID 6909475
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i274t-472e67ba7287b9f814f32bb3dafdc611a2f425c6d32b9e45e843da817d81d53e3
IEDL.DBID RIE
ISICitedReferencesCount 14636
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361555600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Thu Sep 04 20:16:15 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i274t-472e67ba7287b9f814f32bb3dafdc611a2f425c6d32b9e45e843da817d81d53e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677900407
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677900407
ieee_primary_6909475
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.5579128
Snippet Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 580
SubjectTerms Computer vision
Conferences
Feature extraction
Hierarchies
Neural networks
Object detection
Pattern recognition
Proposals
Support vector machines
Tasks
Training
Vectors
Visualization
Volatile organic compounds
Title Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
URI https://ieeexplore.ieee.org/document/6909475
https://www.proquest.com/docview/1677900407
WOSCitedRecordID wos000361555600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI62iQOnARtivBQkjnRb2zRpjmgw7TQqBGi3qU1c2GEd2lp-P3bblQNcuEWuWlWO7djxZ5uxWxSTxOhx7KSoDo4IFNpBauHqgi-DFMLAptWwCTWfh4uFjlrsrqmFAYASfAZDWpa5fLsxBV2VjTCS00IFbdZWSlW1WnvZ8aSSIqhmd5dW2MfIRuomo-DRNJYy8yl9R2pXNyB4PZq8Rc8E8hJD6m5dDln5ZZnL42ba_d-PHrH-T90ej5oT6Zi1IDth3drR5LUa75C0n-Wwp_VYRBX2nBzCYgt8tqK6ZPOBYTRHr5bfG1NQTwn-lNC9DX-AvIRwZTzO8MOwxv1ZGVy8r-tapqzPXqePL5OZU09bcFYYmeaOUB5IlcQKY6hEp6ErUt9LEt_GqTXSdWMvRf020iJVgwggFPgsdJVFlzfwwT9lnWyTwRnBpcbk94SJDbVIwQ3B97S041iMwVgvGbAe8Wz5WTXUWNbsGrCbPdOXKOSUuYgz2BS7pSupLSLaG3X-96sX7JA2sMJwXbJOvi3gih2Yr3y1216XkvINdCi6hA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SXDisSHeBIkjhaVNk-aIBtMQMCY00G5Vm7iwAx3aVn4_dtuNA1y4Ra5aVY7t2PFnm7FzFJPUmlbiZagOngw12kFq4SogUGEGUeiyatiE7vWi4dD0l9jFohYGAErwGVzSsszlu7Et6KrsCiM5I3W4zFZDKX1RVWvNpcdXWsmwmt5d2uEAYxtlFjkFn-axlLlPFXjKCLOAwZur9mv_mWBe8pL6W5djVn7Z5vLA6Wz-71e3WPOnco_3F2fSNluCfIdt1q4mrxV5iqT5NIc5rcH6VGPPySUsJsC7I6pMtu8YSHP0a_m1tQV1leBPKd3c8BuYlSCunCc5fhg-cIdGFhdvH3U1U95kL53bQbvr1fMWvBHGpjNPah-UThONUVRqskjILPDTNHBJ5qwSIvEz1HCrHFINyBAiic8ioR06vWEAwS5bycc57BFgqkWeT5S6yMgMRASBb5RrJbIF1vnpPmsQz-LPqqVGXLNrn53NmR6jmFPuIslhXExjoagxIlocffD3q6dsvTt4fIgf7nr3h2yDNrNCdB2xldmkgGO2Zr9mo-nkpJSab1V8vcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Rich+Feature+Hierarchies+for+Accurate+Object+Detection+and+Semantic+Segmentation&rft.au=Girshick%2C+Ross&rft.au=Donahue%2C+Jeff&rft.au=Darrell%2C+Trevor&rft.au=Malik%2C+Jitendra&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=580&rft.epage=587&rft_id=info:doi/10.1109%2FCVPR.2014.81&rft.externalDocID=6909475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon