Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination

A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents dissociate. The effects of the dissociation of these species will be varied and must be carefully accounted for. Here we take the first steps t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters Jg. 857; H. 2
Hauptverfasser: Bell, Taylor J., Cowan, Nicolas B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Austin The American Astronomical Society 20.04.2018
IOP Publishing
Schlagworte:
ISSN:2041-8205, 2041-8213
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents dissociate. The effects of the dissociation of these species will be varied and must be carefully accounted for. Here we take the first steps toward understanding the consequences of dissociation and recombination of molecular hydrogen (H2) on atmospheric heat recirculation. Using a simple energy balance model with eastward winds, we demonstrate that H2 dissociation/recombination can significantly increase the day-night heat transport on ultra-hot Jupiters (UHJs): gas giant exoplanets where significant H2 dissociation occurs. The atomic hydrogen from the highly irradiated daysides of UHJs will transport some of the energy deposited on the dayside toward the nightside of the planet where the H atoms recombine into H2; this mechanism bears similarities to latent heat. Given a fixed wind speed, this will act to increase the heat recirculation efficiency; alternatively, a measured heat recirculation efficiency will require slower wind speeds after accounting for H2 dissociation/recombination.
AbstractList A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents dissociate. The effects of the dissociation of these species will be varied and must be carefully accounted for. Here we take the first steps toward understanding the consequences of dissociation and recombination of molecular hydrogen (H2) on atmospheric heat recirculation. Using a simple energy balance model with eastward winds, we demonstrate that H2 dissociation/recombination can significantly increase the day-night heat transport on ultra-hot Jupiters (UHJs): gas giant exoplanets where significant H2 dissociation occurs. The atomic hydrogen from the highly irradiated daysides of UHJs will transport some of the energy deposited on the dayside toward the nightside of the planet where the H atoms recombine into H2; this mechanism bears similarities to latent heat. Given a fixed wind speed, this will act to increase the heat recirculation efficiency; alternatively, a measured heat recirculation efficiency will require slower wind speeds after accounting for H2 dissociation/recombination.
Author Bell, Taylor J.
Cowan, Nicolas B.
Author_xml – sequence: 1
  givenname: Taylor J.
  orcidid: 0000-0003-4177-2149
  surname: Bell
  fullname: Bell, Taylor J.
  email: taylor.bell@mail.mcgill.ca
  organization: Department of Physics, McGill University , 3600 rue University, Montréal, QC H3A 2T8, Canada
– sequence: 2
  givenname: Nicolas B.
  orcidid: 0000-0001-6129-5699
  surname: Cowan
  fullname: Cowan, Nicolas B.
  organization: Department of Earth & Planetary Sciences, McGill University , 3450 rue University, Montréal, QC H3A 0E8, Canada
BookMark eNptkEtrAjEUhUOxULXddxkodNWpeU0mLsU-tAiFouuQyVxrRJNpkvn_1VrspqtzOXzcA98A9XzwgNAtJY9ciWrEiKCFYpSPjKmtVReof65655uUV2iQ0pYQRiRVfWTn3kYwCRo8A5PxMhqf2hAzdh6vdjmaYhMyfutalyHiSd6H1G4gQsJ5E0P3ucEzhp9cSsE6k13w2PgGf4AN-9r5n-YaXa7NLsHNbw7R6uV5OZ0Vi_fX-XSyKByrhCqUknVZ24ZSW0lVUsHVWNqyIrwWorIWGLCSA3Cqmpo0HCQIKxhvaK1kVY_5EN2d_rYxfHWQst6GLvrDpGZcllIyxcWBuj9RLrR_gGm3O63KSjO9YES3zfoAPvwDUqKPvvVRqD7K1Sff_BtLdXUz
ContentType Journal Article
Copyright 2018. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Apr 20, 2018
Copyright_xml – notice: 2018. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Apr 20, 2018
DBID 7TG
8FD
H8D
KL.
L7M
DOI 10.3847/2041-8213/aabcc8
DatabaseName Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination
EISSN 2041-8213
ExternalDocumentID apjlaabcc8
GroupedDBID 1JI
2FS
4.4
6J9
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ACGFS
ACHIP
ACYGS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
EBS
EJD
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
PJBAE
RIN
ROL
SY9
T37
~02
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-i2748-886b5bcd11c7685143896c5703b447cce2e253ee318db0d3e6e4c423d1b867b93
IEDL.DBID O3W
ISSN 2041-8205
IngestDate Wed Aug 13 07:20:26 EDT 2025
Thu Jan 07 13:52:06 EST 2021
Wed Aug 21 03:32:10 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2748-886b5bcd11c7685143896c5703b447cce2e253ee318db0d3e6e4c423d1b867b93
Notes AAS09438
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6129-5699
0000-0003-4177-2149
OpenAccessLink https://iopscience.iop.org/article/10.3847/2041-8213/aabcc8/pdf
PQID 2365662834
PQPubID 4562431
PageCount 6
ParticipantIDs proquest_journals_2365662834
iop_journals_10_3847_2041_8213_aabcc8
PublicationCentury 2000
PublicationDate 2018-04-20
PublicationDateYYYYMMDD 2018-04-20
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-20
  day: 20
PublicationDecade 2010
PublicationPlace Austin
PublicationPlace_xml – name: Austin
PublicationTitle Astrophysical journal. Letters
PublicationTitleAbbrev APJL
PublicationTitleAlternate Astrophys. J. Lett
PublicationYear 2018
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
SSID ssj0020618
Score 2.6286197
Snippet A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents...
SourceID proquest
iop
SourceType Aggregation Database
Enrichment Source
Publisher
SubjectTerms Atmosphere
Dissociation
Energy balance
Extrasolar planets
Gas giant planets
Heat transport
Hydrogen
Jupiter
Latent heat
methods: analytical
methods: numerical
Planetary atmospheres
planets and satellites: atmospheres
planets and satellites: gaseous planets
Stellar atmospheres
Stellar winds
Transport
Wind speed
Title Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination
URI https://iopscience.iop.org/article/10.3847/2041-8213/aabcc8
https://www.proquest.com/docview/2365662834
Volume 857
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2041-8213
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020618
  issn: 2041-8205
  databaseCode: O3W
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VwsDCG7VQwAOwBRo7D1dMFVBVCBUGKtgivyqC2qRqUiT-PecktEIwILFZySmOzr7P953tO4BThHwaKKltztDA8Yz00OZc4Uh03kU4MkxpXhSbCAcD_vLSeazB1eIuTDqtoP8Cm2Wi4FKF1r4ZYinSdc91OHXZpRBSKb4Cq4z7vj3P98CeF2wLF6qiHF0p3fbLPcpfv4DrCnb2A42LJaa3-a-f24KNyrMk3VJ0G2om2YFGN7Ox7nTyQc5J0S5DGdkuKIQGeyLdaNJHQCaLNOckTshwnM-E85rm5G4-tbeUSTefpJnNQWAyUhX3IX1KbuLl-BKRaGL57ATpdvFkD4a926frvlOVXHBipKfc4TyQvlTadRXyEL-ojR4om6VLel6olKGG-szYwKmWbc1MYDyFHpl2JQ9C2WH7UE_SxDSA4PswMIrzkS89MRKCKTegCKcdHYaKiyacoRKjymSyCNmI1WBkNRhZDUalBptw8k1OTN_GEfdRMLqn7WiqR01ofQ3cUowy66mi8-Qd_LGjQ1hHb4jbrSLabkE9n83NEayp9zzOZsfF5PoE4qHSMg
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCXFhR5TVB-AWaOws7rGiVGVR6QEEN8tbRVGbVE1A4u8ZJ6EVggMSNyuZxNZz_DzPjmcATpDyaaSVcTFDIy-wKsAx50tPofMu475l2vAi2UTc7fLn50avynNanIVJxxX1n2OxDBRcQujGN0MuRbke-B6nPruQUmnNL8amPw-LLk6JS2Fwz56migsnqyIlXflEPSz3KX99C84tWOEPRi6mmfbavxu4DquVh0mapfkGzNlkE3abmVvzTkcf5IwU5XJJI9sCjRTh_ky3hnSQmMk03DkZJORxmE-k95Lm5OZt7E4rk2Y-SjMXi8BmpEryQzqUtAazfiYyMcTp2hHK7uLKNjy2rx4uO16VesEboEzlHueRCpU2vq9Rj4RFjvRIu2hdKghirS21NGTWLaAaVTfMRjbQ6JkZX_EoVg22AwtJmthdIHg_jqzmvB-qQPalZNqPKNJqw8Sx5rIGpwikqIZOJlCVOBSFQ1E4FEWJYg2Ov9nJ8etQ8BANxR2tC8S4BgdfnTczo8x5rOhEBXt_rOgYlnuttri77t7uwwo6SNztHtH6ASzkkzd7CEv6PR9kk6PiW_sEqrzXkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+Heat+Transport+in+Ultra-hot+Jupiter+Atmospheres+through+H2+Dissociation+and+Recombination&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Bell%2C+Taylor+J.&rft.au=Cowan%2C+Nicolas+B.&rft.date=2018-04-20&rft.pub=The+American+Astronomical+Society&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=857&rft.issue=2&rft_id=info:doi/10.3847%2F2041-8213%2Faabcc8&rft.externalDocID=apjlaabcc8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon