Drone-Aided Network Coding for Secure Wireless Communications: A Reinforcement Learning Approach

This study investigates how base stations (BSs) apply network coding to protect the downlink data and how drones relay the coded packets to resist active eavesdropping that performs jamming to induce the BS to raise the transmit power and thus steal more data. We present a drone-aided network coding...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE Global Communications Conference (GLOBECOM) pp. 01 - 06
Main Authors: Li, Hongyan, Yu, Shi, Lu, Xiaozhen, Xiao, Liang, Wang, Li-Chun
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study investigates how base stations (BSs) apply network coding to protect the downlink data and how drones relay the coded packets to resist active eavesdropping that performs jamming to induce the BS to raise the transmit power and thus steal more data. We present a drone-aided network coding framework for secure downlink transmission, which incorporates a random linear network coding algorithm to encode the BS messages against active eavesdropping. This framework designs a model-based reinforcement learning to choose the BS network coding and transmission policy based on the jamming power sent by the active eavesdropper, the previous transmission performance, and the BS channel states without the prior knowledge of the drone-eavesdropper channel states. The learning parameters such as the Q-values are updated by the real experiences in the downlink transmission process besides the simulated experiences that are generated from the virtual model in the designed Dyna architecture. Simulation results show that our proposed scheme outperforms the benchmarks in terms of the intercept probability, the transmission performance, and the BS energy consumption.
AbstractList This study investigates how base stations (BSs) apply network coding to protect the downlink data and how drones relay the coded packets to resist active eavesdropping that performs jamming to induce the BS to raise the transmit power and thus steal more data. We present a drone-aided network coding framework for secure downlink transmission, which incorporates a random linear network coding algorithm to encode the BS messages against active eavesdropping. This framework designs a model-based reinforcement learning to choose the BS network coding and transmission policy based on the jamming power sent by the active eavesdropper, the previous transmission performance, and the BS channel states without the prior knowledge of the drone-eavesdropper channel states. The learning parameters such as the Q-values are updated by the real experiences in the downlink transmission process besides the simulated experiences that are generated from the virtual model in the designed Dyna architecture. Simulation results show that our proposed scheme outperforms the benchmarks in terms of the intercept probability, the transmission performance, and the BS energy consumption.
Author Xiao, Liang
Yu, Shi
Lu, Xiaozhen
Li, Hongyan
Wang, Li-Chun
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Li
  fullname: Li, Hongyan
  organization: Xiamen University.,Dept. of Information & Communication Engineering
– sequence: 2
  givenname: Shi
  surname: Yu
  fullname: Yu, Shi
  organization: Xiamen University.,Dept. of Information & Communication Engineering
– sequence: 3
  givenname: Xiaozhen
  surname: Lu
  fullname: Lu, Xiaozhen
  email: lxiao@xmu.edu.cn
  organization: Xiamen University.,Dept. of Information & Communication Engineering
– sequence: 4
  givenname: Liang
  surname: Xiao
  fullname: Xiao, Liang
  organization: Xiamen University.,Dept. of Information & Communication Engineering
– sequence: 5
  givenname: Li-Chun
  surname: Wang
  fullname: Wang, Li-Chun
  email: lichun@g2.nctu.edu.tw
  organization: National Chiao Tung University,Dept. of Electrical Engineering & Computer Science
BookMark eNotj8lOwzAYhI0EB1p4Ai4W9xQviRduIbQFKRCJRRyLY_8Bi8aunFSItyeInkaamW-kmaHjEAMgdEnJglKir9Z1c7OsmodcFJPFCKMLLVTBqTxCMyqZooqSXJyi99s0kVnpHTj8CON3TF-4is6HD9zFhJ_B7hPgN59gC8MwRX2_D96a0ccwXOMSP4EPU9NCD2HENZgU_uByt0vR2M8zdNKZ7QDnB52j19XypbrL6mZ9X5V15pnkY8ahsM5ZBprw3IBwrbSd4taBMbyDTrKCE2NFrqxuC9qyXFKimBLTES245nN08b_rAWCzS7436WdzOM1_AcNSU9g
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOBECOM46510.2021.9685317
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728181046
9781728181042
EndPage 06
ExternalDocumentID 9685317
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971366
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i273t-3e5cddc2e9034ae6db7cf83cdeaa3fef72530ac648c9b51b24710828618196393
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790747201098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:46 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i273t-3e5cddc2e9034ae6db7cf83cdeaa3fef72530ac648c9b51b24710828618196393
PageCount 6
ParticipantIDs ieee_primary_9685317
PublicationCentury 2000
PublicationDate 2021-Dec.
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle 2021 IEEE Global Communications Conference (GLOBECOM)
PublicationTitleAbbrev GLO46510
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8129872
Snippet This study investigates how base stations (BSs) apply network coding to protect the downlink data and how drones relay the coded packets to resist active...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Base stations
Benchmark testing
drones
eavesdropping
Knowledge engineering
Network coding
rein-forcement learning
Reinforcement learning
Resists
Simulation
Title Drone-Aided Network Coding for Secure Wireless Communications: A Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/9685317
WOSCitedRecordID wos000790747201098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8eBJDRjf6cGjhe12t6XeEEEPCsRowg1LOzUkBgwPf79td4Mh8eKtafpKm-k3nc58A3Cd5y53KTrqX8uWZhy9SKG11HCPrpm1TpgkJpuQg0F7PFajCtxsY2EQMTqfYTMU41--XZhNMJW1lPDgwmQVqlKKIlar5BFliWo9PA3vet3hc8junfiXX8qaZYedzCkROPoH_5vyEBq_EXhktMWWI6jgvA7v98vFHGlnZtGSQeG_TbqL0IJ43ZNE2zmS4ND66S8wshP8sbolHfKCkSjVRJsgKblVP0inJBZvwFu_99p9pGWGBDrzaseacsyNtSZFlfBMo7BTaVybG4tac4dOpjlPtBFZ26hpzqaph6LAWSc8rnvJU_wYanO_8hMgTHLnR9FGJS6TUmor0THnmE4FonKnUA-7M_kqSDAm5cac_V19DvvhAAq_jwuorZcbvIQ9872erZZX8eR-AMvEnWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf9uDRhe12d0u9IYIYYSEGE264tFNDYsAs4O-37W4wJF68NU1faTP9ptOZbwBuo0hHOkDtmdey8kKGRqRQKU8yg66hUjqWvks2wZOkMR6LYQnuNrEwiOicz7Bmi-4vXy3k2prK6iI24EL5DuxGYRj4ebRWwSRKfVF_6g0e2q1B3-b39s3bL6C1ostW7hQHHZ3D_016BNXfGDwy3KDLMZRwXoH3x2wxR685U6hIkntwk9bCtiBG-yTOeo7EurR-miuMbIV_LO9Jk7yio0qVzipICnbVD9IsqMWr8NZpj1pdr8iR4M2M4rHyGEZSKRmg8FmYYqymXOoGkwrTlGnUPIiYn8o4bEgxjeg0MGBkWetig-xG9gQ7gfLcrPwUCOVMm1FSKXwdcs5TxVFTrWkaxIhCn0HF7s7kK6fBmBQbc_539Q3sd0f93qT3nLxcwIE9jNwL5BLKq2yNV7Anv1ezZXbtTvEHKQugrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Global+Communications+Conference+%28GLOBECOM%29&rft.atitle=Drone-Aided+Network+Coding+for+Secure+Wireless+Communications%3A+A+Reinforcement+Learning+Approach&rft.au=Li%2C+Hongyan&rft.au=Yu%2C+Shi&rft.au=Lu%2C+Xiaozhen&rft.au=Xiao%2C+Liang&rft.date=2021-12-01&rft.pub=IEEE&rft.spage=01&rft.epage=06&rft_id=info:doi/10.1109%2FGLOBECOM46510.2021.9685317&rft.externalDocID=9685317