A novel modulation classification method in cognitive radios using higher-order cumulants and denoising stacked sparse autoencoder

In this paper, we propose a novel modulation classification method based on deep network as well as higher-order cumulants. The proposed algorithm uses the higher-order cumulants as the features, and thus achieves impressive noise suppression. We use Stacked Denoising Sparse Autoencoder as a classif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) S. 1 - 5
Hauptverfasser: Xu Zhu, Fujii, Takeo
Format: Tagungsbericht
Sprache:Englisch
Japanisch
Veröffentlicht: Asia Pacific Signal and Information Processing Association 01.12.2016
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a novel modulation classification method based on deep network as well as higher-order cumulants. The proposed algorithm uses the higher-order cumulants as the features, and thus achieves impressive noise suppression. We use Stacked Denoising Sparse Autoencoder as a classifier for single-carrier modulation classification. This classifier can classify different modulated signals by cumulants automatically, and omit the decision of feature thresholds. A very different aspect from conventional neural network is its stacked structure, which simplifies an exponentially large number of hidden units by a multi-layer construction. Moreover, the better performance of backpropagation and network tune can be achieved while using Stacked Sparse Autoencoder. In addition, Denoising process improves the performance of noise suppression by training the network with a corrupted database. The performance of the multi-classes classification is given by simulations, which indicates that there is a significant performance advantage over the conventional methods.
AbstractList In this paper, we propose a novel modulation classification method based on deep network as well as higher-order cumulants. The proposed algorithm uses the higher-order cumulants as the features, and thus achieves impressive noise suppression. We use Stacked Denoising Sparse Autoencoder as a classifier for single-carrier modulation classification. This classifier can classify different modulated signals by cumulants automatically, and omit the decision of feature thresholds. A very different aspect from conventional neural network is its stacked structure, which simplifies an exponentially large number of hidden units by a multi-layer construction. Moreover, the better performance of backpropagation and network tune can be achieved while using Stacked Sparse Autoencoder. In addition, Denoising process improves the performance of noise suppression by training the network with a corrupted database. The performance of the multi-classes classification is given by simulations, which indicates that there is a significant performance advantage over the conventional methods.
Author Fujii, Takeo
Xu Zhu
Author_xml – sequence: 1
  surname: Xu Zhu
  fullname: Xu Zhu
  email: zhuxu@awcc.uec.ac.jp
  organization: Adv. Wireless & Commun. Res. Center, Univ. of Electro-Commun., Tokyo, Japan
– sequence: 2
  givenname: Takeo
  surname: Fujii
  fullname: Fujii, Takeo
  email: fujii@awcc.uec.ac.jp
  organization: Adv. Wireless & Commun. Res. Center, Univ. of Electro-Commun., Tokyo, Japan
BookMark eNotULtOwzAUNRIMtPAFXfwDCY6dJs4YVTwqVaISMFc39nVjkdiV7VRi5cuJaKej8xzOgtw675CQVcHyomDNU7v_2O7bnLOiymvJmazYDVk0UhZlXUku78lvS50_40BHr6cBkvWOqgFitMaqCx0x9V5TOxv-6GyyZ6QBtPWRTtG6I-3tsceQ-aAxUDWN845LkYLTVKPz9j8UE6hv1DSeIESkMCWPTvm58kDuDAwRH6-4JF8vz5-bt2z3_rrdtLvM8pqlzJRdDag74GJtmk7xNV93QqraIDSlklCLrgJelZ3QHASWAAKYQV3pxpSzsiSry65FxMMp2BHCz-F6i_gDLmVh7Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APSIPA.2016.7820860
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9881476828
9789881476821
EndPage 5
ExternalDocumentID 7820860
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i270t-f4b7aedba235f9bc2525b38c7fea94c8a73b6a264b3d2a3e4aa3a0fed6d9f42a3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393591800188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i270t-f4b7aedba235f9bc2525b38c7fea94c8a73b6a264b3d2a3e4aa3a0fed6d9f42a3
PageCount 5
ParticipantIDs ieee_primary_7820860
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationTitle 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)
PublicationTitleAbbrev APSIPA
PublicationYear 2016
Publisher Asia Pacific Signal and Information Processing Association
Publisher_xml – name: Asia Pacific Signal and Information Processing Association
Score 1.6506137
Snippet In this paper, we propose a novel modulation classification method based on deep network as well as higher-order cumulants. The proposed algorithm uses the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cognitive radio
Cost function
Feature extraction
Manganese
Modulation
Noise reduction
Training
Title A novel modulation classification method in cognitive radios using higher-order cumulants and denoising stacked sparse autoencoder
URI https://ieeexplore.ieee.org/document/7820860
WOSCitedRecordID wos000393591800188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4QwEG3WjQdPanaN3-nBo-wChZYeN0ajidmQ-JG9bVo6KImCAXZ_gL_cacE1Jl68QVto0jKdaXnzHiEXQaaCEPDjlRq3q5EwaHO-NGjxIFSEDpM7SZbnezGfJ4uFTAfkcpMLAwAOfAYTe-n-5ZsqW9mjsqnldks4btC3hOBdrlZPJBT4cjpLH-7SmUVr8Unf8pdkivMYN7v_62uPjH9S72i6cSr7ZADliHzOaFmt4Y2-V6aX26KZDXstzqe77ZSgaYEV34AgWitTVA210PYX-uoAHZ6j2qTYO76nbBuqSkNx6akK1whDRbRqQ3GZqRugatVWlugSHxmTp5vrx6tbrxdP8IpQ-K2XR1ooMFqFLM6lzsI4jDVLMpGDklGWKME0VxgOaWZCxSBSiik_B8ONzCMsOSDDsirhkNA4gYBFTOccDNYEWmqdyFj53GcGZHZERnb8lh8dP8ayH7rjv4tPyI6dog4SckqGbb2CM7Kdrduiqc_dpH4Bnump8A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jCvqksonf5sFHu7VN-pHHIQ6HcxScsreRNLda0Fbabj_AX-5NWyeCL761SdpA0pt7k557DiFXTiwdF_DjFQq3qzzQaHO20GjxEEiODtOvJVmep8FsFi4WIuqQ600uDADU4DMYmMv6X77O45U5KhsabrfQxw36lse5azfZWi2VkGOL4Sh6nEQjg9fyB23bX6Iptc8Y7_2vt33S_0m-o9HGrRyQDmQ98jmiWb6GN_qe61Zwi8Ym8DVIn-a20YKmKVZ8Q4JoIXWal9SA21_oaw3psGqyTYq943uyqqQy0xQXnzytG2GwiHatKS40RQlUrqrcUF3iI33yNL6d39xZrXyClbqBXVkJV4EEraTLvESo2PVcT7EwDhKQgsehDJjyJQZEimlXMuBSMmknoH0tEo4lh6Sb5RkcEeqF4DDOVOKDxhpHCaVC4Unbt5kGER-Tnhm_5UfDkLFsh-7k7-JLsnM3f5gup5PZ_SnZNdPVAETOSLcqVnBOtuN1lZbFRT3BX5nbrTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+%28APSIPA%29&rft.atitle=A+novel+modulation+classification+method+in+cognitive+radios+using+higher-order+cumulants+and+denoising+stacked+sparse+autoencoder&rft.au=Xu+Zhu&rft.au=Fujii%2C+Takeo&rft.date=2016-12-01&rft.pub=Asia+Pacific+Signal+and+Information+Processing+Association&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAPSIPA.2016.7820860&rft.externalDocID=7820860