An empirical performance evaluation of a parameter-free genetic algorithm for job-shop scheduling problem
The Job-Shop Scheduling Problem (JSSP) is well known as one of the most difficult NP-hard combinatorial optimization problems. Several GA-based approaches have been reported for the JSSP. Among them, there is a parameter-free genetic algorithm (PfGA) for JSSP proposed by Matsui et al., based on an e...
Gespeichert in:
| Veröffentlicht in: | 2007 IEEE Congress on Evolutionary Computation S. 3796 - 3803 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
IEEE
01.09.2007
|
| Schlagworte: | |
| ISBN: | 1424413397, 9781424413393 |
| ISSN: | 1089-778X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Job-Shop Scheduling Problem (JSSP) is well known as one of the most difficult NP-hard combinatorial optimization problems. Several GA-based approaches have been reported for the JSSP. Among them, there is a parameter-free genetic algorithm (PfGA) for JSSP proposed by Matsui et al., based on an extended version of PfGA, which uses random keys for representing permutation of operations in jobs, and uses a hybrid scheduling for decoding a permutation into a schedule. They reported that their algorithm performs well for typical benchmark problems, but the experiments were limited to a small number of problem instances. This paper shows the results of an empirical performance evaluation of the GA for a wider range of problem instances. The results show that the GA performs well for many problem instances, and the performance can be improved greatly by increasing the number of subpopulations in the parallel distributed version. |
|---|---|
| AbstractList | The Job-Shop Scheduling Problem (JSSP) is well known as one of the most difficult NP-hard combinatorial optimization problems. Several GA-based approaches have been reported for the JSSP. Among them, there is a parameter-free genetic algorithm (PfGA) for JSSP proposed by Matsui et al., based on an extended version of PfGA, which uses random keys for representing permutation of operations in jobs, and uses a hybrid scheduling for decoding a permutation into a schedule. They reported that their algorithm performs well for typical benchmark problems, but the experiments were limited to a small number of problem instances. This paper shows the results of an empirical performance evaluation of the GA for a wider range of problem instances. The results show that the GA performs well for many problem instances, and the performance can be improved greatly by increasing the number of subpopulations in the parallel distributed version. |
| Author | Yamada, S. Matsui, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Matsui fullname: Matsui, S. organization: Central Res. Inst. of Electr. Power Ind., Tokyo – sequence: 2 givenname: S. surname: Yamada fullname: Yamada, S. |
| BookMark | eNo9kD1rwzAYhFWaQpM0e6GL_oBTfdmSxmDSDwh0aaFbeC2_ShRsychOof--gZbecvcMd8MtyCymiITcc7bmnNnHeluvBWN6rZRQtiqvyIJfkuJSMXb9D9LqGZlzZmyhtfm8JatxPLGLVKm4VnMSNpFiP4QcHHR0wOxT7iE6pPgF3RmmkCJNngIdIEOPE-bCZ0R6wIhTcBS6Q8phOvb00qSn1BTjMQ10dEdsz12IBzrk1HTY35EbD92Iqz9fko-n7Xv9Uuzenl_rza4IQrOpAFcZbbkrhWdlaZXlwFvjvHCaNxwYOqmatvWyRKelEQa0RN22yrHKKFHJJXn43Q2IuB9y6CF_7_9ukj_M2ly9 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC.2007.4424965 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 1424413400 9781424413409 |
| EndPage | 3803 |
| ExternalDocumentID | 4424965 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 |
| ID | FETCH-LOGICAL-i270t-ac68791c52f0559491a1d8cf2c71b1a0ec34bddf35ec73828a73e7dd4c0684263 |
| IEDL.DBID | RIE |
| ISBN | 1424413397 9781424413393 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256053702122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Wed Aug 27 01:41:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i270t-ac68791c52f0559491a1d8cf2c71b1a0ec34bddf35ec73828a73e7dd4c0684263 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_4424965 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-09-01 |
| PublicationDateYYYYMMDD | 2007-09-01 |
| PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | 2007 IEEE Congress on Evolutionary Computation |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2007 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000454174 ssj0014519 |
| Score | 1.6692027 |
| Snippet | The Job-Shop Scheduling Problem (JSSP) is well known as one of the most difficult NP-hard combinatorial optimization problems. Several GA-based approaches have... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3796 |
| SubjectTerms | Algorithm design and analysis Biological cells Decoding Design engineering Genetic algorithms History Job shop scheduling Power engineering and energy Production Simulated annealing |
| Title | An empirical performance evaluation of a parameter-free genetic algorithm for job-shop scheduling problem |
| URI | https://ieeexplore.ieee.org/document/4424965 |
| WOSCitedRecordID | wos000256053702122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMdfkHjQCwoYf6cHj062tqzr0RCIJ8JBE26kP2VGNjKGf7_tNkATL962NcuWps17r-99Pw_gQRKqsNtkAcaWB5QpEwjrghVKpMKRoaGVsmo2wabTZD7nsxY87rUwxpiq-Mw8-csql69ztfVHZQNKscebH8ERY3Gt1dqfp3iUXORdmSaD4LEpdXE9dx5kMt-JulxMVrMAPeupuSe7_GXIB6PxqAYbNh_71XWlMjqTzv9-9wz6B_Uemu3t0jm0TNaFzq59A2p2cxdOf7AIe5A-Z8is1mmFDEHrg54AHYDgKLdIIE8LX_kqmsAWxiC3Ar0QEonP97xIy-UKuTfRRy6DzTJfIxc9O2vmRe-oaV7Th7fJ-HX0EjR9GIIUs7AMhIoTxiM1xDZ0AQjlkYh0oixWLJKRCI0iVGptydAoRlwIJxgxTGuqQp_li8kFtLM8M5eAnHujiObajUjKhBKE60TGwlrj_BQRXkHPz-NiXaM2Fs0UXv_9-AZO6qNWX_J1C-2y2Jo7OFZfZbop7qv18Q0ClLaM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NT8JAEIYniCbqBQWM3-7Bo5W2u7Dt0RAIRiQcMOFG9lNqpCWl-PvdbQto4sXbtk3TZrObmdmZ9xmAe46J8M0mc3xfhw6hQjlMm2CFYC58TxFXc543m6CjUTCdhuMKPGy1MEqpvPhMPdphnsuXiVjbo7IWIb7Fm-_BftsM3UKttT1RsTA5zzozZQ7BglOK8vrQ-JDBdCPrMlFZQQO0tKfyGm8ymG7Y6va6Bdqw_Nyvviu52enX_vfDJ9Dc6ffQeGuZTqGi4jrUNg0cULmf63D8g0bYgOgpRmqxjHJoCFruFAVohwRHiUYMWV74wtbRODpVCpk1aKWQiH2-J2mUzRfIvIk-Eu6s5skSmfjZ2DMre0dl-5omvPV7k-7AKTsxOJFP3cxhohPQ0BNtX7smBCGhxzwZCO0L6nGPuUpgwqXUuK0ExSaIYxQrKiURrs3zdfAZVOMkVueAjIMjsAylecIJZYLhUAa8w7RWxlNh7gU07DzOlgVsY1ZO4eXft-_gcDB5Hc6Gz6OXKzgqDl5tAdg1VLN0rW7gQHxl0Sq9zdfKN7GbudM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=An+empirical+performance+evaluation+of+a+parameter-free+genetic+algorithm+for+job-shop+scheduling+problem&rft.au=Matsui%2C+S.&rft.au=Yamada%2C+S.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424413393&rft.issn=1089-778X&rft.spage=3796&rft.epage=3803&rft_id=info:doi/10.1109%2FCEC.2007.4424965&rft.externalDocID=4424965 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |

