A new envelope function for nonsmooth DC optimization
Difference-of-convex (DC) optimization problems are shown to be equivalent to the minimization of a Lipschitz-differentiable "envelope". A gradient method on this surrogate function yields a novel (sub)gradient-free proximal algorithm which is inherently parallelizable and can handle fully...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Conference on Decision & Control s. 4697 - 4702 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
14.12.2020
|
| Témata: | |
| ISSN: | 2576-2370 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Difference-of-convex (DC) optimization problems are shown to be equivalent to the minimization of a Lipschitz-differentiable "envelope". A gradient method on this surrogate function yields a novel (sub)gradient-free proximal algorithm which is inherently parallelizable and can handle fully nonsmooth formulations. Newton-type methods such as L-BFGS are directly applicable with a classical linesearch. Our analysis reveals a deep kinship between the novel DC envelope and the forward-backward envelope, the former being a smooth and convexity-preserving nonlinear reparametrization of the latter. |
|---|---|
| ISSN: | 2576-2370 |
| DOI: | 10.1109/CDC42340.2020.9304514 |