BEHAVE: Dataset and Method for Tracking Human Object Interactions
Modelling interactions between humans and objects in natural environments is central to many applications including gaming, virtual and mixed reality, as well as human behavior analysis and human-robot collaboration. This challenging operation scenario requires generalization to vast number of objec...
Uložené v:
| Vydané v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 15914 - 15925 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.01.2022
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Modelling interactions between humans and objects in natural environments is central to many applications including gaming, virtual and mixed reality, as well as human behavior analysis and human-robot collaboration. This challenging operation scenario requires generalization to vast number of objects, scenes, and human actions. Unfortunately, there exist no such dataset. Moreover, this data needs to be acquired in diverse natural environments, which rules out 4D scanners and marker based capture systems. We present BEHAVE dataset, the first full body human-object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them. We record ~15k frames at 5 locations with 8 subjects performing a wide range of interactions with 20 common objects. We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup. Our key insight is to predict correspondences from the human and the object to a statistical body model to obtain human-object contacts during interactions. Our approach can record and track not just the humans and objects but also their interactions, modeled as surface contacts, in 3D. Our code and data can be found at: http://virtualhumans.mpi-inf.mpg.de/behave. |
|---|---|
| AbstractList | Modelling interactions between humans and objects in natural environments is central to many applications including gaming, virtual and mixed reality, as well as human behavior analysis and human-robot collaboration. This challenging operation scenario requires generalization to vast number of objects, scenes, and human actions. Unfortunately, there exist no such dataset. Moreover, this data needs to be acquired in diverse natural environments, which rules out 4D scanners and marker based capture systems. We present BEHAVE dataset, the first full body human-object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them. We record ~15k frames at 5 locations with 8 subjects performing a wide range of interactions with 20 common objects. We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup. Our key insight is to predict correspondences from the human and the object to a statistical body model to obtain human-object contacts during interactions. Our approach can record and track not just the humans and objects but also their interactions, modeled as surface contacts, in 3D. Our code and data can be found at: http://virtualhumans.mpi-inf.mpg.de/behave. |
| Author | Bhatnagar, Bharat Lal Xie, Xianghui Theobalt, Christian Petrov, Ilya A. Sminchisescu, Cristian Pons-Moll, Gerard |
| Author_xml | – sequence: 1 givenname: Bharat Lal surname: Bhatnagar fullname: Bhatnagar, Bharat Lal email: bbhatnag@mpi-inf.mpg.de organization: University of Tubingen,Germany – sequence: 2 givenname: Xianghui surname: Xie fullname: Xie, Xianghui email: xxie@mpi-inf.mpg.de organization: Max Planck Institute for Informatics, Saarland Informatics Campus,Germany – sequence: 3 givenname: Ilya A. surname: Petrov fullname: Petrov, Ilya A. email: i.petrov@uni-tuebingen.de organization: University of Tubingen,Germany – sequence: 4 givenname: Cristian surname: Sminchisescu fullname: Sminchisescu, Cristian email: sminchisescu@google.com organization: Google Research – sequence: 5 givenname: Christian surname: Theobalt fullname: Theobalt, Christian email: theobalt@mpi-inf.mpg.de organization: Max Planck Institute for Informatics, Saarland Informatics Campus,Germany – sequence: 6 givenname: Gerard surname: Pons-Moll fullname: Pons-Moll, Gerard email: gerard.pons-moll@uni-tuebingen.de organization: University of Tubingen,Germany |
| BookMark | eNotjkFOwzAQAA0Cibb0BXDwBxJ2bWcdcysl0EpFRaj0WjnJBlKogxJz4PdUgtMcRhrNWJyFLrAQ1wgpIrib-fb5JVOU56kCpVLAzNgTMUaizJAzpE_FCIF0Qg7dhZgOwx4AtEIkl4_E7K5YzLbFrbz30Q8cpQ-1fOL43tWy6Xq56X310YY3ufg--CDX5Z6rKJch8lHEtgvDpThv_OfA039OxOtDsZkvktX6cTmfrZJWkYsJI2vyx0ciashjXnGDyOANe1PWmq2vSee6tBWDBaOJoNRoSltT41SmJ-Lqr9sy8-6rbw--_9m53DoAq38ByKJK2Q |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.01547 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 15925 |
| ExternalDocumentID | 9879007 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: 409792180 funderid: 10.13039/501100001659 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i269t-e1e36a202666f6a18cef11e0a4ea4bd3e7ad6383b7ce07043660b314b7d6f9253 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870783001070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-e1e36a202666f6a18cef11e0a4ea4bd3e7ad6383b7ce07043660b314b7d6f9253 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9879007 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6059506 |
| Snippet | Modelling interactions between humans and objects in natural environments is central to many applications including gaming, virtual and mixed reality, as well... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 15914 |
| SubjectTerms | 3D from multi-view and sensors; 3D from single images; Pose estimation and tracking; Vision + graphics Codes Mixed reality Neural networks Pose estimation Predictive models Solid modeling Three-dimensional displays |
| Title | BEHAVE: Dataset and Method for Tracking Human Object Interactions |
| URI | https://ieeexplore.ieee.org/document/9879007 |
| WOSCitedRecordID | wos000870783001070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2QePCECsbv9ODRwnZb2q03RAgHRWKUcCP9mE24LAYWf79td4Mx8eKt6aXJayZv5rVvBqE7bnKdJo6RzNqU-PoLiHaSEkgkOCcdJHFm5PxZTqfZYqFmDXS_98IAQPx8Bt2wjG_5bm13QSrr-fpYRev4gZSi8mrt9RTmKxmhstodRxPVG85nb6GZSfjAlabdkCz8nqESKWTc-t_hx6jz48XDsz3LnKAGFKeoVSePuA7NbRsNHkeTwXz0gJ906ZmpxLpw-CXOh8Y-McWelGyQxXGU7fGrCQIMjoJg5W3YdtDHePQ-nJB6PgJZpUKVBCgw4ZH2HCtyoWlmIacUEs1Bc-MYSO18eDEjrYc-9JoXiWGUG-lErtI-O0PNYl3AOcJgfWxbYXz2wbjloEzfl44izR3nfS3lBWoHRJafVQuMZQ3G5d_bV-goQF4pFdeoWW52cIMO7Ve52m5u4719A6gemBE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2ImugJFYzf9uDRhd222-56Q4RgBCQGCTfSj9mEy2Jg8ffbdjcYEy_eml6avGbyZl77ZhC6ZyqTJDQ0SLQmga2_IJBGRAGEAowRBkI_M3I2FONxMp-nkxp62HlhAMB_PoOWW_q3fLPSWyeVtW19nHrr-H7MGAlLt9ZOUaG2luFpUvnjojBtd2eTd9fOxH3hIqTl0oXfU1Q8ifTr_zv-GDV_3Hh4suOZE1SD_BTVq_QRV8G5aaDOU2_QmfUe8bMsLDcVWOYGj_yEaGxTU2xpSTthHHvhHr8pJ8FgLwmW7oZNE330e9PuIKgmJARLwtMigAgot1hbluUZl1GiIYsiCCUDyZShIKSxAUaV0BZ8122eh4pGTAnDs5TE9Azt5asczhEGbaNbc2XzD8o0g1TFtnjkJDOMxVKIC9RwiCw-yyYYiwqMy7-379DhYDoaLoYv49crdOTgL3WLa7RXrLdwgw70V7HcrG_9HX4DxOCbWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=BEHAVE%3A+Dataset+and+Method+for+Tracking+Human+Object+Interactions&rft.au=Bhatnagar%2C+Bharat+Lal&rft.au=Xie%2C+Xianghui&rft.au=Petrov%2C+Ilya+A.&rft.au=Sminchisescu%2C+Cristian&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=15914&rft.epage=15925&rft_id=info:doi/10.1109%2FCVPR52688.2022.01547&rft.externalDocID=9879007 |