CMFL: Mitigating Communication Overhead for Federated Learning
Federated Learning enables mobile users to collaboratively learn a global prediction model by aggregating their individual updates without sharing the privacy-sensitive data. As mobile devices usually have limited data plan and slow network connections to the central server where the global model is...
Uložené v:
| Vydané v: | Proceedings of the International Conference on Distributed Computing Systems s. 954 - 964 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2019
|
| Predmet: | |
| ISSN: | 2575-8411 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Federated Learning enables mobile users to collaboratively learn a global prediction model by aggregating their individual updates without sharing the privacy-sensitive data. As mobile devices usually have limited data plan and slow network connections to the central server where the global model is maintained, mitigating the communication overhead is of paramount importance. While existing works mainly focus on reducing the total bits transferred in each update via data compression, we study an orthogonal approach that identifies irrelevant updates made by clients and precludes them from being uploaded for reduced network footprint. Following this idea, we propose Communication-Mitigated Federated Learning (CMFL) in this paper. CMFL provides clients with feedback information regarding the global tendency of model updating. Each client checks if its update aligns with this global tendency and is relevant enough to model improvement. By avoiding uploading those irrelevant updates to the server, CMFL can substantially reduce the communication overhead while still guaranteeing the learning convergence. CMFL is shown to achieve general improvement in communication efficiency for almost all of the existing federated learning schemes. We evaluate CMFL through extensive simulations and EC2 emulations. Compared with vanilla Federated Learning, CMFL yields 13.97x communication efficiency in terms of the reduction of network footprint. When applied to Federated Multi-Task Learning, CMFL improves the communication efficiency by 5.7x with 4% higher prediction accuracy. |
|---|---|
| AbstractList | Federated Learning enables mobile users to collaboratively learn a global prediction model by aggregating their individual updates without sharing the privacy-sensitive data. As mobile devices usually have limited data plan and slow network connections to the central server where the global model is maintained, mitigating the communication overhead is of paramount importance. While existing works mainly focus on reducing the total bits transferred in each update via data compression, we study an orthogonal approach that identifies irrelevant updates made by clients and precludes them from being uploaded for reduced network footprint. Following this idea, we propose Communication-Mitigated Federated Learning (CMFL) in this paper. CMFL provides clients with feedback information regarding the global tendency of model updating. Each client checks if its update aligns with this global tendency and is relevant enough to model improvement. By avoiding uploading those irrelevant updates to the server, CMFL can substantially reduce the communication overhead while still guaranteeing the learning convergence. CMFL is shown to achieve general improvement in communication efficiency for almost all of the existing federated learning schemes. We evaluate CMFL through extensive simulations and EC2 emulations. Compared with vanilla Federated Learning, CMFL yields 13.97x communication efficiency in terms of the reduction of network footprint. When applied to Federated Multi-Task Learning, CMFL improves the communication efficiency by 5.7x with 4% higher prediction accuracy. |
| Author | WANG, Wei WANG, Luping LI, Bo |
| Author_xml | – sequence: 1 givenname: Luping surname: WANG fullname: WANG, Luping organization: Hong Kong University of Science and Technology – sequence: 2 givenname: Wei surname: WANG fullname: WANG, Wei organization: Hong Kong University of Science and Technology – sequence: 3 givenname: Bo surname: LI fullname: LI, Bo organization: Hong Kong University of Science and Technology |
| BookMark | eNotjE1Lw0AUAFdRsK29C17yBxLf22S_PAiSGi2k9KCey2b3bV0xiSRR8N8b0NMwMMySnXV9R4xdIWSIYG625aZ8zjigyQDAmBO2Nkqj4hq5QAOnbMGFEqkuEC_Ychzf50xomS_YXbmr6ttkF6d4tFPsjknZt-1XF91sfZfsv2l4I-uT0A9JRZ4GO5FParJDN9eX7DzYj5HW_1yx1-rhpXxK6_3jtryv08ilmVIrnQelSQYtC3BokRriDihHp0PjnUJljWxyBc76ohG58loGVzTchQCYr9j13zcS0eFziK0dfg5aawGiyH8BowFKxQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICDCS.2019.00099 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781728125190 1728125197 |
| EISSN | 2575-8411 |
| EndPage | 964 |
| ExternalDocumentID | 8885054 |
| Genre | orig-research |
| GroupedDBID | 23M 29G 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i269t-a6cd078e6f8640c1a1ebe2c0e31c8fbdc717a96b370cad4b537d86fc4b2cff013 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 404 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565234200090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:40:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-a6cd078e6f8640c1a1ebe2c0e31c8fbdc717a96b370cad4b537d86fc4b2cff013 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_8885054 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings of the International Conference on Distributed Computing Systems |
| PublicationTitleAbbrev | ICDSC |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0005863 |
| Score | 2.5841947 |
| Snippet | Federated Learning enables mobile users to collaboratively learn a global prediction model by aggregating their individual updates without sharing the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 954 |
| SubjectTerms | Communication efficiency Computational modeling Convergence Data models Federated Learning Network Optimization Servers Training Training data |
| Title | CMFL: Mitigating Communication Overhead for Federated Learning |
| URI | https://ieeexplore.ieee.org/document/8885054 |
| WOSCitedRecordID | wos000565234200090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MmCZxsB0GlkAEEi2VAKlb5ZztqkuKSsrvx07SFiQWNsuLpTv73p3v7h3AZcxQGmf3qNbCBSjGWqryWFD0gITe4c9VNWxCjEZyMknGLbja9MIYY6riM3Ptl1UuXy9w5b_KBi5ac4Adt6EthKh7tbblHJKzdRoySAZP6X366iu3PB1l4JldfwxPqbAj6_7v1D3ob5vwyHgDL_vQMsUBdNdTGEjzKHtwlw6z51synNdsGcWM_Gr6IC_usjqLq4lzT0nmuSOce6lJQ6w668N79vCWPtJmKgKdRzwpqeKoHa4bbiWPAwxV6PQQYWBYiNLmGl2AphKeMxGg0nF-w4SW3GKcR2it8_gOoVMsCnMEBEMbacNZxSKvFEs0t4pbB1AmlFLLY-h5cUw_auKLaSOJk7-3T2HXy7uuZT2DTrlcmXPYwa9y_rm8qLT1DTk2l4U |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_Doyj5Kt-vBy-oGIiCJmHAj3WlL9rIYBH-_7e4Cmnjx1vTSZKadb6Yz8w3ALQ2QK2P3HClDE6AorR2R0tBBC0hoHf5UFMMmwuGQTybRqAZ3m14YpVRRfKbu7bLI5cs5ruxXWdtEawaw6Q7sdij1vbJba1vQwVmwTkS6UbsXP8VvtnbLElK6ltv1x_iUAj2Sxv_OPYTWtg2PjDYAcwQ1lR9DYz2HgVTPsgmP8SDpP5BBVvJl5DPyq-2DvJrramyuJMZBJYlljzAOpiQVteqsBe_J8zjuOtVcBCfzWbR0BENpkF0xzRl10ROe0YSPrgo85DqVaEI0EbE0CF0UkqadIJScaaSpj1obn-8E6vk8V6dA0NO-VCwoeOSFCCLJtGDaQJTyOJf8DJpWHNOPkvpiWkni_O_tG9jvjgf9ab83fLmAAyv7srL1EurLxUpdwR5-LbPPxXWhuW9KcJrM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=CMFL%3A+Mitigating+Communication+Overhead+for+Federated+Learning&rft.au=WANG%2C+Luping&rft.au=WANG%2C+Wei&rft.au=LI%2C+Bo&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=2575-8411&rft.spage=954&rft.epage=964&rft_id=info:doi/10.1109%2FICDCS.2019.00099&rft.externalDocID=8885054 |